Section: Properties of Regular Languages

Example

\[L = \{a^n b a^n \mid n > 0\} \]

Closure Properties

A set is closed over an operation if

\[L_1, L_2 \in \text{class} \]
\[L_1 \; \text{op} \; L_2 = L_3 \]
\[\Rightarrow L_3 \in \text{class} \]
\(L = \{ x \mid x \text{ is a positive even integer} \} \)

\(L \) is closed under

- addition? \(\text{yes} \)
- multiplication? \(\text{yes} \)
- subtraction? \(\text{no} \)
- division? \(\text{no} \)

Closure of Regular Languages

Theorem 4.1 If \(L_1 \) and \(L_2 \) are regular languages, then

\[
L_1 \cup L_2 \\
L_1 \cap L_2 \\
L_1 L_2 \\
\bar{L}_1 \\
L_1^*
\]

are regular languages.
Proof(sketch)

L_1 and L_2 are regular languages
$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.
$\quad L_1 = L(r_1)$ and $L_2 = L(r_2)$
$\quad r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$
\Rightarrow closed under union

r_1r_2 is r.e. denoting L_1L_2
\Rightarrow closed under concatenation

r_1^* is r.e. denoting L_1^*
\Rightarrow closed under star-closure
complementation:

L_1 is reg. lang.

$\Rightarrow \exists$ DFA M s.t. $L_1 = L(M)$

Construct M' s.t.

final states in M are nonfinal states in M'

nonfinal states in M are final states in M'
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' = (Q \times P)$

δ':

$s'(((q_i, p_j), a)) = (q_k, p_l)$ iff

$s_1(q_i, a) = q_k \in M_1$ and

$s_2(p_j, a) = p_l \in M_2$

$F' = \{ (q_i, p_j) \in Q' | q_i \in F_1 \text{ and } p_j \in F_2 \}$
Example:
Regular languages are closed under

- reversal L^R
- difference $L_1 - L_2$
- right quotient L_1 / L_2
- homomorphism $h(L)$
Right quotient

Def: $L_1/L_2 = \{x \mid xy \in L_1 \text{ for some } y \in L_2\}$

Example:

$L_1 = \{a^*b^* \cup b^*a^*\}$
$L_2 = \{b^n \mid n \text{ is even, } n > 0\}$
$L_1/L_2 = \exists \alpha \ast b^* \exists$
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M = (Q, \Sigma, \delta, q_0, F)$ s.t. $L_1 = L(M)$.

Construct DFA $M' = (Q, \Sigma, \delta, q_0, F')$

For each state i do

 Make i the start state (representing L_i')

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

$$h(a) = 11$$

$$h(b) = 00$$

$$h(c) = 0$$

$$h(bc) =$$

$$h(ab^*) =$$
Questions about regular languages:

L is a regular language.

• Given L, Σ, w ∈ Σ*, is w ∈ L?

• Is L empty?

• Is L infinite?

• Does L₁ = L₂?
Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_1 = \{a^n b^m | n > 0, m > 0\} = \emptyset$
- $L_2 = \{a^n b^n | n > 0\}$
Prove that $L_2 = \{a^n b^n | n > 0\}$ is ?

• Proof: Suppose L_2 is regular.
 $\Rightarrow \exists$ DFA M that recognizes L_2
Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

- $|xy| \leq m$
- $|y| \geq 1$
- $xy^i z \in L$ for all $i \geq 0$
To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.
 Assume L is regular.
 \(\Rightarrow \) L satisfies the pumping lemma.
 Choose a long string \(w \) in L, \(|w| \geq m \).
 Show that there is NO division of \(w \) into \(xyz \) (must consider all possible divisions) such that \(|xy| \leq m, |y| \geq 1 \) and \(xy^iz \in L \ \forall \ i \geq 0 \).
 The pumping lemma does not hold. Contradiction!
 \(\Rightarrow \) L is not regular. QED.
Example $L = \{a^n c b^n | n > 0\}$

L is not regular.

- **Proof:**
 - Assume L is regular.
 - \Rightarrow the pumping lemma holds.
 - Choose $w =$
Example $L=\{a^n b^{n+s} c^s | n, s > 0\}$

L is not regular.

- **Proof:**

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$

 So the partition is:
Example $\Sigma = \{a, b\}$,
$L = \{ w \in \Sigma^* \mid n_a(w) > n_b(w) \}$

L is not regular.

• Proof:
 Assume L is regular.
 \Rightarrow the pumping lemma holds.
 Choose $w = \ldots$
 So the partition is:
Example $L = \{a^3b^n c^{n-3} | n > 3\}$
(shown in detail on handout)
L is not regular.
To Use Closure Properties to prove L is not regular:

- **Proof Outline:**

 Assume L is regular.

 Apply closure properties to L and other regular languages, constructing L' that you know is not regular.

 closure properties $\Rightarrow L'$ is regular.

 Contradiction!

 L is not regular. QED.
Example $L = \{a^3b^nc^{n-3} | n > 3\}$

L is not regular.

- Proof: (proof by contradiction)
 Assume L is regular.
 Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$
 $h(a) = a \quad h(b) = a \quad h(c) = b$
 $h(L) = _________$
Example \(L = \{a^n b^m a^m | m \geq 0, n \geq 0\} \)

\(L \) is not regular.

- **Proof: (proof by contradiction)**
 Assume \(L \) is regular.
Example: \(L_1 = \{a^n b^n a^n | n > 0\} \)

\(L_1 \) is not regular.