Section: Other Models of Turing Machines

Definition: Two automata are equivalent if they accept the same language.

Turing Machines with Stay Option

Modify δ,

$\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$

Theorem Class of standard TM’s is equivalent to class of TM’s with stay option.

Proof:

\Rightarrow: Given a standard TM M, then there exists a TM M' with stay option such that $L(M) = L(M')$.

(easy) run it, it doesn't use S
• (\iff): Given a TM M with stay option, construct a standard TM M' such that $L(M) = L(M')$.

$M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$

$M' = (Q', \Sigma, \Gamma, \delta', q_0', B, F')$

For each transition in M with a move (L or R) put the transition in M'. So, for

$$\delta(q_i, a) = (q_j, b, \text{L or R})$$

put into δ'

$$\delta'(q_i', a) = (q_j', b, \text{L or R})$$

For each transition in M with S (stay-option), move right and move left. So for

$$\delta(q_i, a) = (q_j, b, S)$$

add new state, put into δ'

$$\delta'(q_i', a) = (q_{j, S}, b, R)$$

$L(M) = L(M')$. QED. $\delta'(q_{j, S}, c) = (q_{j', c}, L)$ for all $c \in \Sigma$.
Definition: A *multiple track* TM divides each cell of the tape into k cells, for some constant k.

A 3-track TM:

\[
\begin{array}{cccc}
 & b & c & a & b \\
1 & 1 & 1 & 1 \\
a & & & \\
\end{array}
\]

A multiple track TM starts with the input on the first track, all other tracks are blank.

\[
\delta: Q \times (\Gamma \times \Gamma \times \Gamma) \rightarrow Q \times (\Gamma \times \Gamma \times \Gamma) \times \{L, R\}
\]
Theorem Class of standard TM’s is equivalent to class of TM’s with multiple tracks.

Proof: (sketch)

- (\Rightarrow): Given standard TM M there exists a TM M' with multiple tracks such that $L(M) = L(M')$.

 Easy, just use one track

- (\Leftarrow): Given a TM M with multiple tracks there exists a standard TM M' such that $L(M) = L(M')$.

 Encode each possible combination of symbols in a column with a unique symbol. A finite number of unique symbols
Definition: A TM with a semi-infinite tape is a standard TM with a left boundary.

Theorem Class of standard TM’s is equivalent to class of TM’s with semi-infinite tapes.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists a TM M’ with semi-infinite tape such that $L(M) = L(M')$. Given M, construct a 2-track semi-infinite TM M’
• \((\Leftarrow)\): Given a TM \(M\) with semi-infinite tape there exists a standard TM \(M'\) such that \(L(M) = L(M')\).

easy \(M'\) just mimics \(M\)
Definition: An Multitape Turing Machine is a standard TM with multiple (a finite number) read/write tapes.

For an n-tape TM, define δ:

$\delta : Q \times \Gamma^n \times \Gamma \rightarrow Q \times \Gamma^n \times \Gamma \times \{L,R\} \times \{\delta_L, \delta_R\}$
Theorem Class of Multitape TM’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (⇐): Given standard TM M, construct a multitape TM M’ such that \(L(M) = L(M') \).

Easy, just use one tape

• (⇒): Given n-tape TM M construct a standard TM M’ such that \(L(M) = L(M') \).

\[
\begin{array}{cccccc}
\# & a & b & c & \# & a \\
\# & 1 & & & \# & a \\
\# & a & a & a & \# & 1 \\
\# & b & b & b & \# & 1 \\
\# & & & & \#
\end{array}
\]
Definition: An Off-Line Turing Machine is a standard TM with 2 tapes: a read-only input tape and a read/write output tape.

Define $\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma \times \Xi \cup \{L,R\} \times \Xi \cup \{L,R\}$

```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
</table>
```

Input tape (read only)

```
|   | b  | b  | d  |
```

Read/write tape
Theorem Class of standard TM’s is equivalent to class of Off-line TM’s.

Proof: (sketch)

• (\Rightarrow): Given standard TM M there exists an off-line TM M' such that $L(M)=L(M')$.

• (\Leftarrow): Given an off-line TM M there exists a standard TM M' such that $L(M)=L(M')$.

4-track TM

<table>
<thead>
<tr>
<th></th>
<th>#</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Running Time of Turing Machines

Example:

Given $L = \{a^n b^n c^n \mid n > 0\}$. Given $w \in \Sigma^*$, is w in L?

Write a 3-tape TM for this problem.

read thru a's
move b's to tape 2
move c's to tape 3
check all 3 at the same time
Definition: An Multidimensional-tape Turing Machine is a standard TM with a multidimensional tape

\[\begin{array}{c}
\uparrow \\
\downarrow \\
\text{a b c}
\end{array} \]

Define \(\delta \):
\[
\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, U, D\}
\]
Theorem: Class of standard TM’s is equivalent to class of 2-dimensional-tape TM’s.

Proof: (sketch)

- \((\Rightarrow)\): Given standard TM M, construct a 2-dim-tape TM M’ such that \(L(M) = L(M')\).

 Easy, run doesn’t know \(U \lor D\)

- \((\Leftarrow)\): Given 2-dim tape TM M, construct a standard TM M’ such that \(L(M) = L(M')\).
Construct M'

2-track TM
marker (nothing to its left)

Unary location
neg numbers with 0's
Definition: A nondeterministic Turing machine is a standard TM in which the range of the transition function is a set of possible transitions.

Define δ:

Theorem Class of deterministic TM’s is equivalent to class of nondeterministic TM’s.

Proof: (sketch)

• (\Rightarrow): Given deterministic TM M, construct a nondeterministic TM M’ such that $L(M) = L(M')$.

• (\Leftarrow): Given nondeterministic TM M, construct a deterministic TM M’ such that $L(M) = L(M')$.

Construct M’ to be a 2-dim tape TM.
A step consists of making one move for each of the current machines. For example: Consider the following transition:

\[\delta(q_0, a) = \{(q_1, b, R), (q_2, a, L), (q_1, c, R)\} \]

Being in state \(q_0 \) with input abc.
The one move has three choices, so 2 additional machines are started.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>#</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q1</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q2</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>c</td>
<td>b</td>
<td>c</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>q1</td>
<td></td>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
Definition: A 2-stack NPDA is an NPDA with 2 stacks.

Define δ:
Consider the following languages which could not be accepted by an NPDA.

1. \(L = \{ a^n b^n c^n | n > 0 \} \)

2. \(L = \{ a^n b^n a^n b^n | n > 0 \} \)

3. \(L = \{ w \in \Sigma^* | \text{number of } a\text{'s equals number of } b\text{'s equals number of } c\text{'s} \}, \Sigma = \{ a, b, c \} \)
Theorem Class of 2-stack NPDA’s is equivalent to class of standard TM’s.

Proof: (sketch)

• (\(\Rightarrow\)): Given 2-stack NPDA, construct a 3-tape TM M’ such that \(L(M) = L(M')\).
• \leftrightarrow: Given standard TM M, construct a 2-stack NPDA M' such that $L(M) = L(M')$.
Universal TM - a programmable TM

● Input:
 – an encoded TM M
 – input string w

● Output:
 – Simulate M on w
An encoding of a TM

Let TM \(M = \{ Q, \Sigma, \Gamma, \delta, q_1, B, F \} \)

- \(Q = \{ q_1, q_2, \ldots, q_n \} \)
 Designate \(q_1 \) as the start state.
 Designate \(q_2 \) as the only final state.
 \(q_n \) will be encoded as \(n \) 1’s
- \(\text{Moves} \)
 \(L \) will be encoded by 1
 \(R \) will be encoded by 11
- \(\Gamma = \{ a_1, a_2, \ldots, a_m \} \)
 where \(a_1 \) will always represent the B.
For example, consider the simple TM:

\[a; a, R \]

\[b; a, L \]

\[\Gamma = \{ B, a, b \} \] which would be encoded as

\[\delta(q_1, a) = (q_1, a, R), \quad \delta(q_1, b) = (q_2, a, L) \]

which can be represented as 5-tuples:

\[(q_1, a, q_1, a, R), (q_1, b, q_2, a, L) \]

Thus, the encoding of the TM is:

0101101011011010111011011010
For example, the encoding of the TM above with input string “aba” would be encoded as:

010110101101101101101101101001101110110

Question: Given $w \in \{0, 1\}^+$, is w the encoding of a TM?
Universal TM

The Universal TM (denoted M_U) is a 3-tape TM:
Program for M_U

1. Start with all input (encoding of TM and string w) on tape 1. Verify that it contains the encoding of a TM.

2. Move input w to tape 2

3. Initialize tape 3 to 1 (the initial state)

4. Repeat (simulate TM M)

 (a) consult tape 2 and 3, (suppose current symbol on tape 2 is a and state on tape 3 is p)

 (b) lookup the move (transition) on tape 1, (suppose $\delta(p,a) = (q,b,R)$.)

 (c) apply the move

 • write on tape 2 (write b)

 • move on tape 2 (move right)

 • write new state on tape 3 (write q)
Observation: Every TM can be encoded as string of 0’s and 1’s.

Enumeration procedure - process to list all elements of a set in ordered fashion.

Definition: An infinite set is *countable* if its elements have 1-1 correspondence with the positive integers.

Examples:

- $S = \{ \text{positive odd integers} \}$
- $S = \{ \text{real numbers} \}$
- $S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\}$
- $S = \{ \text{TM’s} \}$
- $S = \{ (i,j) \mid i,j>0, \text{ are integers} \}$
Linear Bounded Automata

We place restrictions on the amount of tape we can use,

\[[a\ b\ c] \]

↑

Definition: A linear bounded automaton (LBA) is a nondeterministic TM
\[M=(Q,\Sigma,\Gamma,\delta,q_0,B,F) \] such that \([,] \in \Sigma\) and the tape head cannot move out of the confines of []’s. Thus,
\[\delta(q_i,[]) = (q_j,[,R), \text{ and } \delta(q_i,]) = (q_j,,L) \]

Definition: Let \(M \) be a LBA.
\[L(M)=\{w \in (\Sigma - \{[,\})^\ast | q_0[w] \vdash [x_1q_fx_2]\} \]

Example: \(L=\{a^n b^n c^n | n > 0 \} \) is accepted by some LBA