Read Chapter 11 in Linz.

Definition: A language L is *recursively enumerable* if there exists a TM M such that $L = L(M)$.

Enumeration procedure for recursive languages

To enumerate all $w \in \Sigma^+$ in a recursive language L:

- Let M be a TM that recognizes L, $L = L(M)$.
- Construct 2-tape TM M'
 - Tape 1 will enumerate the strings in Σ^+
 - Tape 2 will enumerate the strings in L.
 - On tape 1 generate the next string v in Σ^+
 - simulate M on v
 - if M accepts v, then write v on tape 2.
Enumeration procedure for recursively enumerable languages

To enumerate all \(w \in \Sigma^+ \) in a recursively enumerable language \(L \):

Repeat forever

- Generate next string (Suppose \(k \) strings have been generated: \(w_1, w_2, ..., w_k \))
- Run \(M \) for one step on \(w_k \)
 - Run \(M \) for two steps on \(w_{k-1} \).

 ...

 Run \(M \) for \(k \) steps on \(w_1 \).

 If any of the strings are accepted then write them to tape 2.

Theorem Let \(S \) be an infinite countable set. Its powerset \(2^S \) is not countable.

Proof - Diagonalization

- \(S \) is countable, so it’s elements can be enumerated.
 \(S = \{s_1, s_2, s_3, s_4, s_5, s_6, ...\} \)

An element \(t \in 2^S \) can be represented by a sequence of 0’s and 1’s such that the \(i \)th position in \(t \) is 1 if \(s_i \) is in \(t \), 0 if \(s_i \) is not in \(t \).

Example, \(\{s_2, s_3, s_5\} \) represented by

Example, set containing every other element from \(S \), starting with \(s_1 \) is \(\{s_1, s_3, s_5, s_7, \ldots\} \) represented by

Suppose \(2^S \) countable. Then we can enumerate all its elements: \(t_1, t_2, \ldots \).

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
<th>(s_7)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(t_4)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>(t_5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(t_6)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>(t_7)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.

Proof:

- A language is a subset of Σ^*.
 The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \overline{L} is not recursively enumerable.

Proof:

- Let $\Sigma = \{a\}$
 Enumerate all TM's over Σ:

<table>
<thead>
<tr>
<th>$L(M_1)$</th>
<th>a</th>
<th>aa</th>
<th>aaa</th>
<th>$aaaa$</th>
<th>$aaaaa$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(M_2)$</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_3)$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_4)$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>$L(M_5)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \bar{L} are both RE, then L is recursive.

Proof:

- There exists an M_1 such that M_1 can enumerate all elements in L.
- There exists an M_2 such that M_2 can enumerate all elements in \bar{L}.

To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \bar{L} is recursive.

Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in L. M outputs a 1 if a string w is in L, and outputs a 0 if a string w is not in L.

Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1, then M' erases the 1 and writes a 0. If TM M halts with a 0, then M' erases the 0 and writes a 1.

Hierarchy of Languages:
Definition A grammar $G=(V,T,S,P)$ is *unrestricted* if all productions are of the form

$$u \rightarrow v$$

where $u \in (V \cup T)^+$ and $v \in (V \cup T)^*$

Example:

Let $G=\langle \{S,A,X\}, \{a,b\}, S, P \rangle$, $P =$

$$S \rightarrow bAaX$$
$$bAa \rightarrow abA$$
$$AX \rightarrow \lambda$$

Example Find an unrestricted grammar G s.t. $L(G)=\{a^n b^n c^n | n > 0\}$

$G=(V,T,S,P)$

$V=\{S,A,B,D,E,X\}$

$T=\{a,b,c\}$

$P =$

1) $S \rightarrow AX$
2) $A \rightarrow aAbc$
3) $A \rightarrow aBbc$
4) $Bb \rightarrow bB$
5) $Bc \rightarrow D$
6) $Dc \rightarrow cD$
7) $Db \rightarrow bD$
8) $DX \rightarrow EXc$

There are some rules missing in the grammar.

To derive string $aabbcc$, use productions 1,2 and 3 to generate a string that has the correct number of a’s b’s and c’s. The a’s will all be together, but the b’s and c’s will be intertwined.

$$S \Rightarrow AX \Rightarrow aAbcX \Rightarrow aaAbcbX \Rightarrow aaAbcbcbX$$
Theorem If \(G \) is an unrestricted grammar, then \(L(G) \) is recursively enumerable.

Proof:

- List all strings that can be derived in one step.

- List all strings that can be derived in two steps.

Theorem If \(L \) is recursively enumerable, then there exists an unrestricted grammar \(G \) such that \(L=L(G) \).

Proof:

- \(L \) is recursively enumerable.
 \[\Rightarrow \] there exists a TM \(M \) such that \(L(M)=L \).
 \[M = (Q, \Sigma, \Gamma, \delta, q_0, B, F) \]
 \[q_0w \xrightarrow{*} x_1q_f x_2 \text{ for some } q_f \in F, \ x_1, x_2 \in \Gamma^* \]
 Construct an unrestricted grammar \(G \) s.t. \(L(G)=L(M) \).
 \[S \xrightarrow{*} w \]
 Three steps
 1. \(S \xrightarrow{*} B \ldots B \# x q_f y B \ldots B \)
 with \(x, y \in \Gamma^* \) for every possible combination
 2. \(B \ldots B \# x q_f y B \ldots B \Rightarrow B \ldots B \# q_0 w B \ldots B \)
 3. \(B \ldots B \# q_0 w B \ldots B \xrightarrow{*} w \)
Definition A grammar G is context-sensitive if all productions are of the form

$$x \rightarrow y$$

where $x, y \in (V \cup T)^+$ and $|x| \leq |y|$.

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $L=L(G)$ or $L=L(G) \cup \{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $L=L(M)$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M)=L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.