Which of the following languages are CFL?

- \(L = \{a^n b^n c^j \mid 0 < n \leq j \} \)
- \(L = \{a^n b^j a^n b^j \mid n > 0, j > 0 \} \)
- \(L = \{a^n b^j a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \} \)
- \(L = \{a^n b^j a^j b^n \mid n > 0, j > 0 \} \)

Pumping Lemma for Regular Language’s: Let \(L \) be a regular language, Then there is a constant \(m \) such that \(w \in L, |w| \geq m, w = xyz \) such that

- \(|xy| \leq m\)
- \(|y| \geq 1\)
- for all \(i \geq 0, xy^i z \in L\)

Pumping Lemma for CFL’s Let \(L \) be any infinite CFL. Then there is a constant \(m \) depending only on \(L \), such that for every string \(w \) in \(L \), with \(|w| \geq m\), we may partition \(w = uvxyz \) such that:

- \(|vxy| \leq m\), (limit on size of substring)
- \(|vy| \geq 1, (v \text{ and } y \text{ not both empty})\)
- For all \(i \geq 0, uv^i xy^i z \in L\)

Proof: (sketch) There is a CFG \(G \) s.t. \(L=L(G) \).

Consider the parse tree of a long string in \(L \).

For any long string, some nonterminal \(N \) must appear twice in the path.
Example: Consider \(L = \{ a^n b^n c^n : n \geq 1 \} \). Show \(L \) is not a CFL.

Proof: (by contradiction)

Assume \(L \) is a CFL and apply the pumping lemma.

Let \(m \) be the constant in the pumping lemma and consider \(w = a^m b^m c^m \). Note \(|w| \geq m \).

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s, then \(uv^2 xy^2 z \notin L \) since there will be \(b \)'s before \(a \)'s.

Thus, \(v \) and \(y \) can only be \(a \)'s, \(b \)'s, or \(c \)'s (not mixed).

Case 2: \(v = a^t_1 \), then \(y = a^t_2 \) or \(b^t_3 \) \((|vxy| \leq m)\)

If \(y = a^t_2 \), then \(uv^2 xy^2 z = a^{m+t_1+t_2} b^m c^m \notin L \) since \(t_1 + t_2 > 0 \), \(n(a) > n(b) \)'s (number of \(a \)'s is greater than number of \(b \)'s)

If \(y = b^t_3 \), then \(uv^2 xy^2 z = a^{m+t_1} b^{m+t_3} c^m \notin L \) since \(t_1 + t_3 > 0 \), either \(n(a) > n(c) \)'s or \(n(b) > n(c) \)'s.

Case 3: \(v = b^t_1 \), then \(y = b^t_2 \) or \(c^t_3 \)

If \(y = b^t_2 \), then \(uv^2 xy^2 z = a^m b^{m+t_1+t_2} c^m \notin L \) since \(t_1 + t_2 > 0 \), \(n(b) > n(a) \)'s.

If \(y = c^t_3 \), then \(uv^2 xy^2 z = a^m b^{m+t_1} c^{m+t_3} \notin L \) since \(t_1 + t_3 > 0 \), either \(n(b) > n(a) \)'s or \(n(c) > n(a) \)'s.

Case 4: \(v = c^t_1 \), then \(y = c^t_2 \)

then, \(uv^2 xy^2 z = a^m b^m c^{m+t_1+t_2} \notin L \) since \(t_1 + t_2 > 0 \), \(n(c) > n(a) \)'s.

Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \), \(|vxy| \leq m \) and for all \(i \geq 0, uv^i x y^i z \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{a^n b^n c^n : n \geq 1\} \)?

Example: Consider \(L = \{a^n b^n c^p : p > n > 0\} \). Show \(L \) is not a CFL.

- Proof: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = \ldots \) Note \(|w| \geq m\).

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1\), \(|vxy| \leq m\), and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Thus, there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1\), \(|vxy| \leq m\) and for all \(i \geq 0\), \(uv^i xy^i z \) is in \(L \). Contradiction, thus, \(L \) is not a CFL. Q.E.D.
Example: Consider $L = \{a^ib^k : k = j^2\}$. Show L is not a CFL.

Proof: Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \ldots$

Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^2xy^2z \notin L$ since there will be b’s before a’s.

Thus, v and y can be only a’s, and b’s (not mixed).

Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^ixy^iz \in L$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.

Exercise: Prove the following is not a CFL by applying the pumping lemma. (answer is at the end of this handout).

Consider $L = \{a^{2n}b^{2p}c^n d^p : n, p \geq 0\}$. Show L is not a CFL.
Example: Consider $L = \{w\bar{w}w : w \in \Sigma^*\}$, $\Sigma = \{a, b\}$, where \bar{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. For example, $w = baaa$, $\bar{w} = abbb$, $w\bar{w} = baaaabbb$. Show L is not a CFL.

- **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \text{__________}$. Show there is no division of w into $uvwxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$, and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.

Thus, there is no breakdown of w into $uvwxyz$ such that $|vy| \geq 1$, $|vxy| \leq m$ and for all $i \geq 0$, $uv^ixy^iz \in L$. Contradiction, thus, L is not a CFL. Q.E.D.
Example: Consider $L = \{a^nb^pa^n\}$. L is a CFL. The pumping lemma should apply!

Let $m \geq 4$ be the constant in the pumping lemma. Consider $w = a^mb^ma^m$.

We can break w into $uvxyz$, with:

If you apply the pumping lemma to a CFL, then you should find a partition of w that works!

Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

- **Proof:**
 Given 2 CFG $G_1 = (V_1, T_1, S_1, P_1)$ and $G_2 = (V_2, T_2, S_2, P_2)$

 - **Union:**
 Construct G_3 s.t. $L(G_3) = L(G_1) \cup L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$

 - **Concatenation:**
 Construct G_3 s.t. $L(G_3) = L(G_1) \circ L(G_2)$.
 $G_3 = (V_3, T_3, S_3, P_3)$
Star-Closure

Construct G_3 s.t. $L(G_3) = L(G_1)^*$

$G_3 = (V_3, T_3, S_3, P_3)$

QED.

Theorem CFL’s are NOT closed under intersection and complementation.

- **Proof:**
 - Intersection:
 - Complementation:
Theorem: CFL’s are closed under regular intersection. If L_1 is CFL and L_2 is regular, then $L_1 \cap L_2$ is CFL.

• Proof: (sketch) This proof is similar to the construction proof in which we showed regular languages are closed under intersection. We take a NPDA for L_1 and a DFA for L_2 and construct a NPDA for $L_1 \cap L_2$.

$M_1 = (Q_1, \Sigma, \Gamma, \delta_1, q_0, z, F_1)$ is an NPDA such that $L(M_1) = L_1$.

$M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$ is a DFA such that $L(M_2) = L_2$.

Example of replacing arcs (NOT a Proof!):
Note this is not a proof, but sketches how we will combine the DFA and NPDA. We must formally define δ_3. If

then

Must show

if and only if

Must show:

\[w \in L(M_3) \text{ iff } w \in L(M_1) \text{ and } w \in L(M_2). \]

QED.
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider $L = \{a^{2n}b^{2m}c^{n}d^{m} : n, m \geq 0\}$. Show L is not a CFL.

- **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = a^{2m}b^{2m}c^{m}d^{m}$.

 Show there is no division of w into $uvxyz$ such that $|vy| \geq 1$, $|vx| \leq m$, and $uv^{i}xy^{i}z \in L$ for $i = 0, 1, 2, \ldots$

 Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a’s and b’s, then $uv^{2}xy^{2}z \notin L$ since there will be b’s before a’s.

 Thus, v and y can be only a’s, b’s, c’s, or d’s (not mixed).

 Case 2: $v = a^{t_{1}}$, then $y = a^{t_{2}}$ or $b^{t_{3}}$ ($|vy| \leq m$)

 If $y = a^{t_{2}}$, then $uv^{2}xy^{2}z = a^{2m+t_{1}+t_{2}}b^{2m}c^{m}d^{m} \notin L$ since $t_{1} + t_{2} > 0$, the number of a’s is not twice the number of c’s.

 If $y = b^{t_{3}}$, then $uv^{2}xy^{2}z = a^{2m+t_{1}}b^{2m+t_{3}}c^{m}d^{m} \notin L$ since $t_{1} + t_{3} > 0$, either the number of a’s (denoted $n(a)$) is not twice $n(c)$ or $n(b)$ is not twice $n(d)$.

 Case 3: $v = b^{t_{1}}$, then $y = b^{t_{2}}$ or $c^{t_{3}}$

 If $y = b^{t_{2}}$, then $uv^{2}xy^{2}z = a^{2m}b^{2m+t_{1}+t_{2}}c^{m}d^{m} \notin L$ since $t_{1} + t_{2} > 0$, $n(b) > 2 \ast n(d)$.

 If $y = c^{t_{3}}$, then $uv^{2}xy^{2}z = a^{2m}b^{2m+t_{1}}c^{m+t_{3}}d^{m} \notin L$ since $t_{1} + t_{3} > 0$, either $n(b) > 2 \ast n(d)$ or $2 \ast n(c) > n(a)$.

 Case 4: $v = c^{t_{1}}$, then $y = c^{t_{2}}$ or $d^{t_{3}}$

 If $y = c^{t_{2}}$, then $uv^{2}xy^{2}z = a^{2m}b^{2m+t_{1}+t_{2}}c^{m}d^{m} \notin L$ since $t_{1} + t_{2} > 0$, $2 \ast n(c) > n(a)$.

 If $y = d^{t_{3}}$, then $uv^{2}xy^{2}z = a^{2m}b^{2m+t_{1}}c^{m+t_{3}}d^{m} \notin L$ since $t_{1} + t_{3} > 0$, either $2 \ast n(c) > n(a)$ or $2 \ast n(d) > n(b)$.

 Case 5: $v = d^{t_{1}}$, then $y = d^{t_{2}}$

 Then $uv^{2}xy^{2}z = a^{2m}b^{2m+c^{m}d^{m+t_{1}+t_{2}}} \notin L$ since $t_{1} + t_{2} > 0$, $2 \ast n(d) > n(c)$.

 Thus, there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1$, $|vx| \leq m$ and for all $i \geq 0$, $uv^{i}xy^{i}z$ is in L. Contradiction, thus, L is not a CFL. Q.E.D.