Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines

1. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - Run M2

 ![Diagram 1](image1)

 z represents any symbol in \(\Gamma \)

2. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - If x is current symbol
 - then Run M2

 ![Diagram 2](image2)

 x is an element of \(M1, M2 \)
3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose \(\Gamma = \{a, b, c, B\} \)

- z is any symbol in \(\Gamma \)
- x is a specific symbol from \(\Gamma \)

1. s - start
2. R - move right
3. L - move left

4. x - write x (and don’t move)

5. R_a - move right until you see an a

6. L_a - move left until you see an a

7. R_{\sim a} - move right until you see anything that is not an a

8. L_{\sim a} - move left until you see anything that is not an a

9. h - halt in a final state

10. \[\Rightarrow_w \]

 If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string \(w \in \Sigma^+ \), \(\Sigma = \{a, b\} \).

If \(|w|\) is odd, then write a \(b \) at the end of the string. The tape head should finish pointing at the leftmost symbol of \(w \).

input: bab, output: babb

input: ba, output: ba

What is the running time?
Example

Assume input string \(w \in \Sigma^+, \Sigma = \{a, b\}, \ |w| > 0 \)

For each \(a \) in the string, append a \(b \) to the end of the string.

input: \(abbabb \), output: \(abbabbb \)

The tape head should finish pointing at the leftmost symbol of \(w \).

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function \(f: \mathbb{D} \rightarrow \mathbb{R} \) is a TM \(M \), which given input \(d \in \mathbb{D} \), halts with answer \(f(d) \in \mathbb{R} \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{array}{l}
\text{start with: } 111+1111 \\
\uparrow \\
\text{end with: } 1111111 \\
\uparrow
\end{array}
\]
Example: Copy a String, \(f(w) = w0w, \ w \in \Sigma^*, \ \Sigma = \{a, b, c\} \)

Denoted by \(C \)

```
start with:    abac
    ↑
end with:    abac0abac
    ↑
```

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

- Start with: $aaBbabca$
- End with: $aaBBbaca$

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba

end with: bacaBBba

(similar to S_R)
Example: Add unary numbers
This time use shift.

Example: Multiply two unary numbers, \(f(x*y) = x*y \), \(x \) and \(y \) unary numbers. Assume \(x,y > 0 \).

\[
\begin{align*}
\text{start with:} & \quad 1111*11 \\
& \quad \uparrow \\
\text{end with:} & \quad 11111111 \\
& \quad \uparrow
\end{align*}
\]