Section: Parsing Ch. 15

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

$$
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \lambda \\
B \rightarrow BBa \mid b \mid \lambda
$$

Is ba in $L(G)$? Running time?

New grammar G' is:

$$
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
$$

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[S \rightarrow aS \mid b \]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
The function FIRST:

\[G = (V, T, S, P) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: FIRST

Given a context-free grammar \(G = (V, T, S, P) \), \(a \in T \) and \(w, v \in (V \cup T)^* \), the FIRST\((w) \) is the set of terminals that can be the first terminal \(a \) in \(w \Rightarrow^* av \). \(\lambda \) is in FIRST\((w) \) if \(w \Rightarrow^* \lambda \).

We show how to calculate FIRST for variables and terminals in the grammar, for \(\lambda \) and for strings.
Algorithm for FIRST

Given a grammar $G = (V, T, S, P)$, calculate $\text{FIRST}(w)$ for w in $(V \cup T)^*$,

1. For $a \in T$, $\text{FIRST}(a) = \{a\}$.
2. $\text{FIRST}(\lambda) = \{\lambda\}$.
3. For $A \in V$, set $\text{FIRST}(A) = \{\}$.
4. Repeat these steps until no more terminals or λ can be added to any FIRST set for variables.

For every production $A \rightarrow w$

$$\text{FIRST}(A) = \text{FIRST}(A) \cup \text{FIRST}(w)$$
5. For \(w = x_1x_2x_3 \ldots x_n \) where
\(x_i \in (V \cup T) \)

a) \(\text{FIRST}(w) = \text{FIRST}(x_1) \)

b)
For \(i \) from 2 to \(n \) do:

 if \(x_j \Rightarrow^* \lambda \) for all \(j \) from 1 to \(i - 1 \) then
 \(\text{FIRST}(w) = \text{FIRST}(w) \cup \text{FIRST}(x_i) - \{ \lambda \} \)

c)
If \(x_i \Rightarrow^* \lambda \) for all \(i \) from 1 to \(n \) then
\(\text{FIRST}(w) = \text{FIRST}(w) \cup \{ \lambda \} \)
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =
Example

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: FOLLOW

Given a context-free grammar $G = (V, T, S, P)$, $A \in V$, $a \in T$ and $w, v \in (V \cup T)^*$, $\text{FOLLOW}(A)$ is the set of terminals that can be the first terminal a immediately following A in some sentential form $vAaw$. $\$$ is always in $\text{FOLLOW}(S)$.
Algorithm for FOLLOW

To calculate FOLLOW for the variables in $G=(V,T,S,P)$. Let $A, B \in V$ and $v, w \in (V \cup T)^*$.

1. $\$$ is in $FOLLOW(S)$.

2. For $A \rightarrow vB$, $FOLLOW(A)$ is in $FOLLOW(B)$.

3. For $A \rightarrow vBw$:

 (a) $FIRST(w) - \{\lambda\}$ is in $FOLLOW(B)$.

 (b) If $\lambda \in FIRST(w)$, then $FOLLOW(A)$ is in $FOLLOW(B)$.
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\text{FOLLOW}(S) =

\text{FOLLOW}(B) =
Example:

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =