Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where

- Q is finite set of states
- Σ is tape (input) alphabet
- q₀ is initial state
- F ⊆ Q is set of final states.
- δ : Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

\[
M = (Q, \Sigma, \delta, q₀, F) =
\]

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q₀, 1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = \(\delta(q,s) \)
 s = next symbol to the right on tape
if q\(\in \)F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

1) \begin{array}{c}
1 \quad 0 \quad 0
\end{array}

2) \begin{array}{c}
1 \quad 0 \quad 0
\end{array}

3) \begin{array}{c}
1 \quad 0 \quad 0
\end{array}

4) \begin{array}{c}
1 \quad 0 \quad 0
\end{array}

Definition:

\(\delta^*(q, \lambda) = q \)

\(\delta^*(q, wa) = \delta(\delta^*(q, w), a) \)

Definition The language accepted by a DFA M=\((Q,\Sigma,\delta,q_0,F)\) is set of all strings on \(\Sigma \) accepted by M. Formally,

\[L(M)=\{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\} \]
Trap State

Example: $L(M) = \{ q_0, q_1 \}$

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example:

$L = \{ w \in \Sigma^* | w \text{ has an even number of } a\text{'s and an even number of } b\text{'s} \}$

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Definition A language L is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = \((Q, \Sigma, \delta, q_0, F)\)

where

- \(Q\) is a finite set of states
- \(\Sigma\) is the tape (input) alphabet
- \(q_0\) is the initial state
- \(F \subseteq Q\) is the set of final states.
- \(\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q\)

Example

\[
\begin{array}{cccc}
q_0 & q_1 & q_2 & q_3 \\
a & a & b & b \\
b & a & a & \\
\end{array}
\]

Note: In this example \(\delta(q_0, a) = \)

\(\{q_1, q_2\}\)

Example

\(L = \{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\}\)

Definition

\(q_j \in \delta^*(q_i, w)\) if and only if there is a walk from \(q_i\) to \(q_j\) labeled \(w\).

Example

From previous example:

\(\delta^*(q_0, ab) = \{q_1, q_2\}\)

\(\delta^*(q_0, aba) = \{q_1, q_2\}\)

Definition:

For an NFA \(M\), \(L(M) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}\)

The language accepted by nfa \(M\) is all strings \(w\) such that there exists a walk labeled \(w\) from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

![NFA Diagram]

Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D = \ldots$

$F_D = \ldots$

$\delta_D : \ldots$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$
2. While can add an edge
 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a
3. Identify final states
4. if $\lambda \in L(M_N)$ then make the start state final.
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If \(L \) is a regular, prove \(R1awb(L) \) is regular.

The property \(R1awb \) applied to a language \(L \) replaces one \(a \) in each string with a \(b \). If a string does not have an \(a \), then the string is not in \(R1awb(L) \).

Example 1: Consider \(L = \{aaab, bbba\} \)

\[R1awb(L) = \]

Example 2: Consider \(\Sigma = \{a, b\} \), \(L = \{w \in \Sigma^* \mid w \text{ has an even number of } a \text{'s and an even number of } b \text{'s}\} \)

\[R1awb(L) = \]

Proof:
Consider the property Truncate_all_preceeding_b's or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b's in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).

Example 1: Consider L={aaab, bbab}

TruncPreb(L)=

Example 2: Consider L = {bba^n | n > 0}

TruncPreb(L)=

Proof:
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 - These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F$$
$$\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR}$$
$$\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F$$
Example:
Example: