Deterministic Finite Accepter (or Automata)

A DFA = (Q, \Sigma, \delta, q_0, F)

where

Q is finite set of states
\Sigma is tape (input) alphabet
q_0 is initial state
F \subseteq Q is set of final states.
\delta: Q \times \Sigma \rightarrow Q
Example: DFA that accepts even binary numbers.

Transition Diagram:

\[M = (Q, \Sigma, \delta, q_0, F) = \]

Tabular Format

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
q_0 & q_0 & q_1 \\
q_1 & \text{not applicable} & \text{not applicable}
\end{array}
\]

Example of a move: \(\delta(q_0,1) = \)

Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q,s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010
Pictorial Example of a trace for 100:

1) 100

2) 100

3) 100

4) 100
Definition:

\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally, \[L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \)
Example:

$L = \{w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\}$
Example: DFA that accepts even binary numbers that have an even number of 1’s.
Definition A language L is regular iff there exists DFA M s.t. $L = L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA = \((Q, \Sigma, \delta, q_0, F) \)

where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(q_0 \) is initial state
- \(F \subseteq Q \) is set of final states.

\(\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q \)
Example

Note: In this example $\delta(q_0, a) = L =$
Example

\[L = \{(ab)^n \mid n > 0\} \cup \{a^nb \mid n > 0\} \]
Definition $q_j \in \delta^*(q_i, w)$ if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

$\delta^*(q_0, ab) =$

$\delta^*(q_0, aba) =$

Definition: For an NFA M,

$L(M) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \}$
2.3 NFA vs. DFA: Which is more powerful?

Example:
Theorem Given an NFA $M_N=(Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D = \,$

$F_D = \,$

$\delta_D : \,$
Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$

2. While can add an edge

 (a) Choose a state $A=\{q_i, q_j, ... q_k\}$ with missing edge for $a \in \Sigma$

 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup ... \cup \delta^*(q_k, a)$

 (c) Add state B if it doesn’t exist

 (d) add edge from A to B with label a

3. Identify final states

4. if $\lambda \in L(M_N)$ then make the start state final.
Example:
Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).

Example 1: Consider L={aaab, bbaa}
R1awb(L)=

Example 2: Consider \(\Sigma = \{a, b\} \), L = \(\{w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\} \)
R1awb(L)=
Proof:
Properties and Proving - Problem 2

Consider the property
Truncate_all_preceeding_b’s or
TruncPreb for short. If L is a regular,
prove TruncPreb(L) is regular.

The property TruncPreb applied to a
language L removes all preceeding b’s
in each string. If a string does not
have an preceeding b, then the string
is the same in TruncPreb(L).

Example 1: Consider L = \{aaab, bbaa\}
TruncPreb(L) =

Example 2: Consider L =
{\((bba)^n \mid n > 0\)}
TruncPreb(L) =

Proof:
Minimizing Number of states in DFA
Why?
Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \not\in F \Rightarrow \delta^*(q, w) \not\in F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \not\in F \quad \text{OR} \\
\delta^*(q, w) \not\in F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example: