Ch. 7 - Pushdown Automata

A DFA = $(Q, \Sigma, \delta, q_0, F)$

Modify DFA by adding a stack. New machine is called Pushdown Automata (PDA).

Definition: Nondeterministic PDA (NPDA) is defined by

$$M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$$
where

- Q is finite set of states
- Σ is tape (input) alphabet
- Γ is stack alphabet
- q_0 is initial state
- z - start stack symbol, (bottom of stack marker), $z \in \Gamma$
- $F \subseteq Q$ is set of final states.

$\delta: Q \times (\Sigma \cup \{\lambda\}) \times \Gamma \rightarrow \text{finite subsets of } Q \times \Gamma^*$

Example of transitions

$\delta(q_1, a, b) = \{(q_3, b), (q_4, ab), (q_6, \lambda)\}$

Meaning: If in state q_1 with “a” the current tape symbol and “b” the symbol on top of the stack, then pop “b”, and either

- move to q_3 and push “b” on stack
- move to q_4 and push “ab” on stack (“a” on top)
- move to q_6

Transitions can be represented using a transition diagram.

The diagram for the above transitions is:

Each arc is labeled by a triple: x,y,z where x is the current input symbol, y is the top of stack symbol which is popped from the stack, and z is a string that is pushed onto the stack.

Instantaneous Description:

$$(q,w,u)$$

Notation to describe the current state of the machine (q), unread portion of the input string (w), and the current contents of the stack (u).
Description of a Move:

\[(q_1, aw, bx) \vdash (q_2, w, yx)\]

iff

Definition Let \(M = (Q, \Sigma, \Gamma, \delta, q_0, z, F) \) be a NPDA. \(L(M) = \{ w \in \Sigma^* \mid (q_0, w, z) \xrightarrow{*} (p, \lambda, u), p \in F, u \in \Gamma^* \} \). The NPDA accepts all strings that start in \(q_0 \) and end in a final state.

Example: \(L = \{ a^n b^n \mid n \geq 0 \}, \Sigma = \{ a, b \}, \Gamma = \{ z, a \} \)

Another Definition for Language Acceptance

NPDA \(M \) accepts \(L(M) \) by empty stack:

\[L(M) = \{ w \in \Sigma^* \mid (q_0, w, z) \xrightarrow{*} (p, \lambda, \lambda) \} \]
Example: \(L = \{ a^n b^m c^{n+m} | n, m > 0 \}, \Sigma = \{a, b, c\}, \Gamma = \{0, z\} \)

Examples for you to try on your own: (solutions are at the end of the handout).

- \(L = \{a^n b^m | m > n, m, n > 0\}, \Sigma = \{a, b\}, \Gamma = \{z, a\} \)
- \(L = \{a^n b^{n+m} c^{m} | n, m > 0\}, \Sigma = \{a, b, c\}, \Gamma = \{z, a\} \)
- \(L = \{a^n b^{2n} | n > 0\}, \Sigma = \{a, b\} \)
Definition: A PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L=L(M)$.

Examples:

1. Previous pda for $\{a^n b^n | n \geq 0\}$ is deterministic?
2. Previous pda for $\{a^n b^m c^{n+m} | n, m > 0\}$ is deterministic?
3. Previous pda for $\{ww^R | w \in \Sigma^+\}, \Sigma = \{a, b\}$ is deterministic?