Chapter 7.2

Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. $L(M) = L(M')$.

- **Proof** (sketch)

 $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $M' = (Q', \Sigma, \Gamma', \delta', q_s, z', F')$
Theorem For any CFL \(L \) not containing \(\lambda \), \(\exists \) an NPDA \(M \) s.t. \(L = L(M) \).

- **Proof** (sketch)

 Given (\(\lambda \)-free) CFL \(L \).

 \(\Rightarrow \) \(\exists \) CFG \(G \) such that \(L = L(G) \).

 \(\Rightarrow \) \(\exists \) \(G' \) in GNF, s.t. \(L(G) = L(G') \).

 \(G' = (V, T, S, P) \). All productions in \(P \) are of the form:

<table>
<thead>
<tr>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \rightarrow aSA)</td>
</tr>
<tr>
<td>(S \rightarrow aAA)</td>
</tr>
<tr>
<td>(S \rightarrow b)</td>
</tr>
<tr>
<td>(A \rightarrow bBBB)</td>
</tr>
<tr>
<td>(B \rightarrow b)</td>
</tr>
</tbody>
</table>

Example: Let \(G' = (V, T, S, P) \), \(P = \)

\[S \rightarrow aSA \mid aAA \mid b \]
\[A \rightarrow bBBB \]
\[B \rightarrow b \]
Theorem Given a NPDA \(M \), \(\exists \) a NPDA \(M' \) s.t. all transitions have the form \(\delta(q_i,a,A)=\{c_1,c_2,\ldots,c_n\} \)
where

\[
c_i=(q_j,\lambda) \quad \text{or} \quad c_i=(q_j,BC)
\]

Each move either increases or decreases stack contents by a single symbol.

- **Proof** (sketch)
Theorem If $L = L(M)$ for some NPDA M, then L is a CFL.

- **Proof:** Given NPDA M.

 First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

 1. accepts if stack is empty
 2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

 $M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $G = (V, \Sigma, S, P)$ where

 $V = \{(q_i, c q_j) | q_i, q_j \in Q, c \in \Gamma \}$

 $(q_i, c q_j)$ represents “starting at state q_i the stack contents are cw, $w \in \Gamma^*$, some path is followed to state q_j and the contents of the stack are now w”.

 Goal: $(q_0, z q_f)$ which will be the start symbol in the grammar.

 Meaning: We start in state q_0 with z on the stack and process the input tape. Eventually we will reach the final state q_f and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).
Example:

L(M)=\{aa^*b\}, M=(Q, \Sigma, \Gamma, \delta, q_0, z, F). Q=\{q_0, q_1, q_2, q_3\}, \Sigma=\{a, b\}, \Gamma=\{A, z\}, F=\{\}. M accepts by empty stack.

Construct the grammar G=(V, T, S, P),

V=\{(q_0Aq_0), (q_0zq_0), (q_0Aq_1), (q_0zq_1), \ldots\}

T=\Sigma

S=(q_0zq_2)
Recognizing aaab in M:

\((q_0, aaab, z) \vdash (q_0, aaab, Az) \)
\(\vdash (q_3, ab, z) \)
\(\vdash (q_0, ab, Az) \)
\(\vdash (q_3, b, z) \)
\(\vdash (q_0, b, Az) \)
\(\vdash (q_1, \lambda, z) \)
\(\vdash (q_2, \lambda, \lambda) \)

Derivation of string aaab in G:

\((q_0q_2) \Rightarrow a(q_0Aq_3)(q_3q_2) \)
\(\Rightarrow aa(q_3q_2) \)
\(\Rightarrow aa(a(q_0Aq_3)(q_3q_2)) \)
\(\Rightarrow aaa(q_3q_2) \)
\(\Rightarrow aaa(a(q_0Aq_1)(q_1q_2)) \)
\(\Rightarrow aaaa(q_1q_2) \)
\(\Rightarrow aaaa(q_1q_2) \)
\(\Rightarrow aaab(q_1q_2) \)
\(\Rightarrow aaab \)
Chapter 7.3

Definition: A PDA $M=(Q,\Sigma,\Gamma,\delta,q_0,z,F)$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q,a,b)$ contains at most 1 element
2. if $\delta(q,\lambda,b) \neq \emptyset$ then $\delta(q,c,b)=\emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L=L(M)$.

Examples:

1. Previous pda for $\{a^n b^n | n \geq 0\}$ is deterministic.
2. Previous pda for $\{a^n b^m c^{n+m} | n,m > 0\}$ is deterministic.
3. Previous pda for $\{ww^R | w \in \Sigma^+ \}, \Sigma = \{a,b\}$ is nondeterministic.

Note: There are CFL’s that are not deterministic.

$L=\{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}$ is a CFL and not a DCFL.

Proof: $L = \{a^n b^n : n \geq 1\} \cup \{a^n b^{2n} : n \geq 1\}$

It is easy to construct a NPDA for $\{a^n b^n : n \geq 1\}$ and a NPDA for $\{a^n b^{2n} : n \geq 1\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.

Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

Construct a PDA M' as follows:

1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2 are called cousins.
2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.
3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^n b^{2n}$. After reading n b’s, must accept if no more b’s and continue if there are more b’s.
4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

This is the construction of our new PDA.

When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^n b^{2n}$. Only the b’s in M_2 have been replaced by c’s, so the new machine accepts $a^n b^n c^n$.

The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.