Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:
Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- Storage
 - tape
- actions
 - write symbol
 - read symbol
 - move left (L) or right (R)
- computation
 - initial configuration
 * start state
 * tape head on leftmost tape square
 * input string followed by blanks
 - processing computation
 * move tape head left or right
 * read from and write to tape
 - computation halts
 * final state

Formal Definition of TM

A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where

- Q is finite set of states
- Σ is input alphabet
- Γ is tape alphabet
- $B\in\Gamma$ is blank
- q_0 is start state
- F is set of final states
- δ is transition function

$\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an 'a', then move into state p, write a 'b' on the tape and move to the right”.
TM as Language recognizer

Definition: Configuration is denoted by \(\vdash \).

If \(\delta(q,a) = (p,b,R) \) then a move is denoted

\[
\text{abaqabba} \vdash \text{abapbbba}
\]

Definition: Let \(M \) be a TM, \(M=(Q,\Sigma,\Gamma,\delta,q_0,B,F) \). \(L(M) = \{ w \in \Sigma^* | q_0w \vdash x_1q_fx_2 \text{ for some } q_f \in F, \ x_1, x_2 \in \Gamma^* \} \)

TM as language acceptor

\(M \) is a TM, \(w \) is in \(\Sigma^* \),

- if \(w \in L(M) \) then \(M \) halts in final state
- if \(w \not\in L(M) \) then either
 - \(M \) halts in non-final state
 - \(M \) doesn’t halt

TM as a transducer

TM can implement a function: \(f(w) = w' \)

\[
\begin{align*}
\text{start with:} & \quad w \\
& \quad \uparrow \\
\text{end with:} & \quad w' \\
& \quad \uparrow
\end{align*}
\]
Definition: A function with domain D is *Turing-computable or computable* if there exists TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ such that

$$q_0w \xrightarrow{*} q_f f(w)$$

$q_f \in F$, for all $w \in D$.

Example

$\Sigma = \{a, b\}$

Replace every second 'a' by a 'b' if string is even length.

- Algorithm
Example:

\[L = \{a^n b^n c^n | n \geq 1\} \]

Is the following TM Correct?

Example:

\[f(x) = 2x \]

\(x \) is a unary number

\[
\begin{align*}
\text{start with:} & \quad 111 \\
\uparrow & \\
\text{end with:} & \quad 111111 \\
\uparrow & \\
\end{align*}
\]

Is the following TM correct?
Example:

$L = \{ w w \mid w \in \Sigma^+ \}$, $\Sigma = \{a, b\}$