Regular Expressions

Method to represent strings in a language

- + union (or)
- \(\circ \) concatenation (AND) (can omit)
- * star-closure (repeat 0 or more times)

Example:
\((a + b)^* \circ a \circ (a + b)^*\)

Example:
\((aa)^*\)

Definition Given \(\Sigma \),

1. \(\emptyset, \lambda, a \in \Sigma \) are R.E.
2. If \(r \) and \(s \) are R.E. then
 - \(r+s \) is R.E.
 - \(rs \) is R.E.
 - \((r) \) is a R.E.
 - \(r^* \) is R.E.
3. \(r \) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{ \lambda \}, \{a\} \) are L denoted by a R.E.
2. if \(r \) and \(s \) are R.E. then
 (a) \(L(r+s) = L(r) \cup L(s) \)
 (b) \(L(rs) = L(r) \circ L(s) \)
 (c) \(L((r)) = L(r) \)
 (d) \(L((r)^*) = (L(r)^*) \)

Precedence Rules
- * highest
- \(\circ \)
- +

Example:
\(ab^* + c = \)
Examples:

1. $\Sigma = \{a, b\}$, \(\{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}\).

2. $\Sigma = \{a, b\}$, \(\{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}\).

3. Regular expression for all integers (including negative)

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $L(M) = L(r)$.

- **Proof:**

 \emptyset

 $\{\lambda\}$

 $\{a\}$

 Suppose r and s are R.E.

 1. $r+s$
 2. rs
 3. r^*

Example

$ab^* + c$

Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- **Proof:**

 L is regular

 $\Rightarrow \exists$

 1. Assume M has one final state and $q_0 \notin F$

 2. Convert to a generalized transition graph (GTG), all possible edges are present.

 If no edge, label with

 Let r_{ij} stand for label of the edge from q_i to q_j

 3. If the GTG has only two states, then it has the following form:

 In this case the regular expression is:

 $r = (r_{i}^{*}r_{ij}r_{j}^{*}r_{ji})^{*}r_{i}^{*}r_{ij}r_{j}^{*}$

 4. If the GTG has three states then it must have the following form:
In this case, make the following replacements:

<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik}r_{kk}^*r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik}r_{kk}^*r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk}r_{kk}^*r_{ki}$</td>
</tr>
</tbody>
</table>

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$

with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:
\begin{align*}
 r + r &= r \\
 s + r^*s &= \\
 r + \emptyset &= \\
 r\emptyset &= \\
 \emptyset^* &= \\
 r\lambda &= \\
 (\lambda + r)^* &= \\
 (\lambda + r)r^* &= \\
\end{align*}

and similar rules.

Example:

\begin{center}
\begin{tikzpicture}
 \node (q0) at (0,0) [state] {q0};
 \node (q1) at (2,2) [state] {q1};
 \node (q2) at (4,-2) [state] {q2};
 \path (q0) edge [loop above] node {a} (q0);
 \path (q0) edge [bend right] node {b} (q1);
 \path (q1) edge [loop above] node {a} (q1);
 \path (q1) edge [bend right] node {b} (q2);
 \path (q2) edge [loop below] node {b} (q2);
\end{tikzpicture}
\end{center}

Section 3.3

Grammar $G=(V,T,S,P)$

- V variables (nonterminals)
- T terminals
- S start symbol
- P productions

Right-linear grammar:

all productions of form

\begin{align*}
 A &\rightarrow xB \\
 A &\rightarrow x
\end{align*}

where $A,B \in V$, $x \in T^*$

Left-linear grammar:

all productions of form

\begin{align*}
 A &\rightarrow Bx \\
 A &\rightarrow x
\end{align*}

where $A,B \in V$, $x \in T^*$

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a,b\}, S, P), \quad P = \]
- \(S \to abS \)
- \(S \to \lambda \)
- \(S \to Sab \)

Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P), \quad P = \]
- \(S \to aB | bS | \lambda \)
- \(B \to aS | bB \)

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\(\iff \) Given a regular grammar \(G \)
- Construct NFA \(M \)
- Show \(L(G) = L(M) \)

\(\implies \) Given a regular language
- \(\exists \) DFA \(M \) s.t. \(L = L(M) \)
- Construct reg. grammar \(G \)
- Show \(L(G) = L(M) \)

Proof of Theorem:

\(\iff \) Given a regular grammar \(G \)
\(G = (V, T, S, P) \)
- \(V = \{V_0, V_1, \ldots, V_y\} \)
- \(T = \{v_0, v_1, \ldots, v_z\} \)
- \(S = V_0 \)

Assume \(G \) is right-linear
(see book for left-linear case).

Construct NFA \(M \) s.t. \(L(G) = L(M) \)
If \(w \in L(G) \), \(w = v_1 v_2 \ldots v_k \)

\(M = (V \cup \{V_f\}, T, \delta, V_0, \{V_f\}) \)
- \(V_0 \) is the start (initial) state
- For each production, \(V_i \to aV_j \),

For each production, $V_i \rightarrow a$,

Show $L(G) = L(M)$
Thus, given R.G. G,
$L(G)$ is regular

(\Rightarrow) Given a regular language L
\exists DFA M s.t. $L = L(M)$
$M = (Q, \Sigma, \delta, q_0, F)$
$Q = \{q_0, q_1, \ldots, q_n\}$
$\Sigma = \{a_1, a_2, \ldots, a_m\}$
Construct R.G. G s.t. $L(G) = L(M)$
$G = (Q, \Sigma, q_0, P)$
if $\delta(q_i, a_j) = q_k$ then

if $q_k \in F$ then

Show $w \in L(M) \iff w \in L(G)$
Thus, $L(G) = L(M)$.
QED.

Example

$G = (\{S, B\}, \{a, b\}, S, P), P =$
$S \rightarrow aB | bS | \lambda$
$B \rightarrow aS | bB$

Example:

![Diagram](image)