Section: Regular Languages

Regular Expressions

Method to represent strings in a language

+ union (or)
 o concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^*\]

Example:

\[(aa)^*\]
Definition Given Σ,

1. $\emptyset, \lambda, a \in \Sigma$ are R.E.

2. If r and s are R.E. then
 - $r+s$ is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r^* is R.E.

3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).
Definition: $L(r) =$ language denoted by R.E. r.

1. \emptyset, $\{\lambda\}$, $\{a\}$ are L denoted by a R.E.

2. if r and s are R.E. then

 (a) $L(r+s) = L(r) \cup L(s)$

 (b) $L(rs) = L(r) \circ L(s)$

 (c) $L((r)) = L(r)$

 (d) $L((r)^*) = (L(r)^*)$
Precedence Rules

* highest

Example:

\[ab^* + c = \]
Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}.$

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than } 3 \text{ } a\text{'s and must end in } ab\}.$

3. Regular expression for all integers (including negative)
Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \(\exists \) NFA M s.t. \(L(M) = L(r) \).

- **Proof:**
 1. \(\emptyset \)
 2. \(\{ \lambda \} \)
 3. \(\{ a \} \)

 Suppose \(r \) and \(s \) are R.E.

 1. \(r + s \)
 2. \(r \circ s \)
 3. \(r^* \)
Example

$ab^* + c$
Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states sucessively until two states left

• Proof:

 L is regular

 $\Rightarrow \exists$

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with

Let r_{ij} stand for label of the edge from q_i to q_j
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

$$ r = (r_{ii}^*r_{ij}r_{ji}^*r_{ji})^*r_{ii}^*r_{ij}r_{jj}^* $$
4. If the GTG has three states then it must have the following form:
<table>
<thead>
<tr>
<th>REPLACE</th>
<th>WITH</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_{ii}</td>
<td>$r_{ii} + r_{ik} r_k^* r_k r_{ki}$</td>
</tr>
<tr>
<td>r_{jj}</td>
<td>$r_{jj} + r_{jk} r_k^* r_k r_{kj}$</td>
</tr>
<tr>
<td>r_{ij}</td>
<td>$r_{ij} + r_{ik} r_k^* r_k r_{kj}$</td>
</tr>
<tr>
<td>r_{ji}</td>
<td>$r_{ji} + r_{jk} r_k^* r_k r_{ki}$</td>
</tr>
</tbody>
</table>

remove state q_k
5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:

- $r + r = r$
- $s + r^* s = s$
- $r + \emptyset = r$
- $r\emptyset = \emptyset$
- $\emptyset^* = \emptyset$
- $r\lambda = r$
- $(\lambda + r)^* = (\lambda + r)^*$
- $(\lambda + r)r^* = (\lambda + r)r^*$

and similar rules.
Example:
Grammar $G=(V,T,S,P)$

- V variables (nonterminals)
- T terminals
- S start symbol
- P productions

Right-linear grammar:

all productions of form

$A \rightarrow xB$
$A \rightarrow x$

where $A, B \in V$, $x \in T^*$
Left-linear grammar:

all productions of form
A → Bx
A → x
where A,B ∈ V, x ∈ T*

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, S, P), \ P = \]
\[S \to abS \]
\[S \to \lambda \]
\[S \to Sab \]
Example 2:

\[G = (\{S,B\}, \{a,b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\((\Leftarrow)\) Given a regular grammar \(G \)
Construct NFA \(M \)
Show \(L(G) = L(M) \)

\((\Rightarrow)\) Given a regular language
\(\exists \) DFA \(M \) s.t. \(L = L(M) \)
Construct reg. grammar \(G \)
Show \(L(G) = L(M) \)
Proof of Theorem:

(\iff) Given a regular grammar G
$G=(V,T,S,P)$

$V=\{V_0, V_1, \ldots, V_y\}$

$T=\{v_o, v_1, \ldots, v_z\}$

$S=V_0$

Assume G is right-linear

(see book for left-linear case).

Construct NFA M s.t. $L(G)=L(M)$

If $w\in L(G)$, $w=v_1v_2\ldots v_k$
M = (V ∪ \{V_f\}, T, δ, V_0, \{V_f\})

V_0 is the start (initial) state

For each production, \(V_i \rightarrow aV_j \),

For each production, \(V_i \rightarrow a \),

Show \(L(G) = L(M) \)

Thus, given R.G. G,

\(L(G) \) is regular
(⇒) Given a regular language \(L \)
\(\exists \) DFA \(M \) s.t. \(L=L(M) \)
\(M=(Q,\Sigma,\delta,q_0,F) \)
\(Q=\{q_0,q_1,\ldots,q_n\} \)
\(\Sigma = \{a_1,a_2,\ldots,a_m\} \)

Construct R.G. \(G \) s.t. \(L(G) = L(M) \)
\(G=(Q,\Sigma,q_0,P) \)
if \(\delta(q_i,a_j)=q_k \) then

if \(q_k \in F \) then

Show \(w \in L(M) \iff w \in L(G) \)
Thus, \(L(G)=L(M) \).

QED.
Example

\[G = (\{S, B\}, \{a, b\}, S, P), \quad P = \]
\[S \rightarrow aB \mid bS \mid \lambda \]
\[B \rightarrow aS \mid bB \]
Example: