Section: Properties of Regular Languages

Example

$L = \{a^n ba^n \mid n > 0\}$

Closure Properties

A set is closed over an operation if

$L_1, L_2 \in \text{class}
L_1 \text{ op } L_2 = L_3
\Rightarrow L_3 \in \text{class}$
L = \{ x \mid x \text{ is a positive even integer}\}

L is closed under

- addition?
- multiplication?
- subtraction?
- division?

Closure of Regular Languages

Theorem 4.1 If \(L_1 \) and \(L_2 \) are regular languages, then

\[
\begin{align*}
& L_1 \cup L_2 \\
& L_1 \cap L_2 \\
& L_1 L_2 \\
& \overline{L}_1 \\
& L_1^*
\end{align*}
\]

are regular languages.
Proof (sketch)

L_1 and L_2 are regular languages
$\Rightarrow \exists$ reg. expr. r_1 and r_2 s.t.

$L_1 = L(r_1)$ and $L_2 = L(r_2)$

$r_1 + r_2$ is r.e. denoting $L_1 \cup L_2$
\Rightarrow closed under union

$r_1 r_2$ is r.e. denoting $L_1 L_2$
\Rightarrow closed under concatenation

r_1^* is r.e. denoting L_1^*
\Rightarrow closed under star-closure
complementation:
L₁ is reg. lang.
⇒ ∃ DFA M s.t. L₁ = L(M)
Construct M’ s.t.
intersection:

L_1 and L_2 are reg. lang.

$\Rightarrow \exists$ DFA M_1 and M_2 s.t.

$L_1 = L(M_1)$ and $L_2 = L(M_2)$

$M_1 = (Q, \Sigma, \delta_1, q_0, F_1)$

$M_2 = (P, \Sigma, \delta_2, p_0, F_2)$

Construct $M' = (Q', \Sigma, \delta', (q_0, p_0), F')$

$Q' =$

δ':
Example:
Regular languages are closed under

- reversal: L^R
- difference: $L_1 - L_2$
- right quotient: L_1 / L_2
- homomorphism: $h(L)$
Right quotient

Def: \(L_1/L_2 = \{ x | xy \in L_1 \text{ for some } y \in L_2 \} \)

Example:

\begin{align*}
L_1 &= \{ a^*b^* \cup b^*a^* \} \\
L_2 &= \{ b^n | n \text{ is even, } n > 0 \} \\
L_1/L_2 &=
\end{align*}
Theorem If L_1 and L_2 are regular, then L_1/L_2 is regular.

Proof (sketch)

\exists DFA $M=(Q,\Sigma,\delta,q_0,F)$ s.t. $L_1 = L(M)$.

Construct DFA $M'=(Q,\Sigma,\delta,q_0,F')$

For each state i do

- Make i the start state (representing L'_i)

QED.
Homomorphism

Def. Let Σ, Γ be alphabets. A homomorphism is a function

$$h: \Sigma \rightarrow \Gamma^*$$

Example:

$$\Sigma = \{a, b, c\}, \Gamma = \{0, 1\}$$

- $h(a) = 11$
- $h(b) = 00$
- $h(c) = 0$

$$h(bc) =$$

$$h(ab^*) =$$
Questions about regular languages:

L is a regular language.

- Given L, Σ, w ∈ Σ*, is w ∈ L?
- Is L empty?
- Is L infinite?
- Does L₁ = L₂?
Identifying Nonregular Languages

If a language L is finite, is L regular?

If L is infinite, is L regular?

- $L_1 = \{a^n b^m | n > 0, m > 0\}$
- $L_2 = \{a^n b^n | n > 0\}$
Prove that $L_2 = \{a^n b^n | n > 0\}$ is ?

- Proof: Suppose L_2 is regular.
 $\Rightarrow \exists$ DFA M that recognizes L_2
Pumping Lemma: Let L be an infinite regular language. \exists a constant $m > 0$ such that any $w \in L$ with $|w| \geq m$ can be decomposed into three parts as $w = xyz$ with

\[
|xy| \leq m \\
|y| \geq 1 \\
xy^iz \in L \text{ for all } i \geq 0
\]
To Use the Pumping Lemma to prove L is not regular:

- Proof by Contradiction.

 Assume L is regular.
 \[\Rightarrow \] L satisfies the pumping lemma.

 Choose a long string \(w \) in L, \(|w| \geq m \).

 Show that there is NO division of \(w \) into \(xyz \) (must consider all possible divisions) such that \(|xy| \leq m, |y| \geq 1 \) and \(xy^i z \in L \ \forall \ i \geq 0 \).

 The pumping lemma does not hold. Contradiction!

 \[\Rightarrow \] L is not regular. QED.

Example $L = \{a^n c b^n | n > 0\}$

L is not regular.

- Proof:

 Assume L is regular.

 \Rightarrow the pumping lemma holds.

 Choose $w =$
Example \(L = \{ a^n b^{n+s} c^s | n, s > 0 \} \)

\(L \) is not regular.

- **Proof:**
 Assume \(L \) is regular.
 \(\Rightarrow \) the pumping lemma holds.
 Choose \(w = \)
 So the partition is:
Example \(\Sigma = \{a, b\} \),
\[L = \{w \in \Sigma^* \mid n_a(w) > n_b(w)\} \]

L is not regular.

- **Proof:**
 Assume L is regular.
 \(\Rightarrow \) the pumping lemma holds.
 Choose \(w = \)
 So the partition is:
Example $L = \{a^3b^n c^{n-3} | n > 3\}$ (shown in detail on handout)
L is not regular.
To Use Closure Properties to prove L is not regular:

- Proof Outline:
 Assume L is regular.
 Apply closure properties to L and other regular languages, constructing L' that you know is not regular.
 closure properties $\Rightarrow L'$ is regular.
 Contradiction!
 L is not regular. QED.
Example $L = \{a^3b^n c^{n-3} | n > 3\}$

L is not regular.

- **Proof:** (proof by contradiction)

 Assume L is regular.

 Define a homomorphism $h : \Sigma \rightarrow \Sigma^*$

 $h(a) = a \quad h(b) = a \quad h(c) = b$

 $h(L) =$
Example \(L = \{ a^n b^m a^m | m \geq 0, n \geq 0 \} \)

\(L \) is not regular.

• Proof: (proof by contradiction)
 Assume \(L \) is regular.
Example: \(L_1 = \{a^n b^n a^n | n > 0\} \)

\(L_1 \) is not regular.