Informed Search

Example

For an uninformed strategy, N_1 and N_2 are just two nodes (at some position in the search tree)

Goal state
Example

For a **heuristic strategy** counting the number of misplaced tiles, N_2 is more promising than N_1.

Heuristic Function

- The **heuristic function** $h(N) \geq 0$ estimates the cost to go from $\text{STATE}(N)$ to a goal state.

 Value is **independent** of the current search tree; it depends only on $\text{STATE}(N)$ and the goal test GOAL.

- Example:

 $$
 \begin{array}{ccc}
 5 & 8 \\
 4 & 2 & 1 \\
 7 & 3 & 6 \\
 \end{array}
 \quad
 \begin{array}{ccc}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 \\
 \end{array}
 $$

 - $h(N) = \text{number of misplaced numbered tiles} = 6$
 - [Why is it an estimate of the distance to the goal?]
Informed/Heuristic Search

- Idea: Give the search algorithm hints
- Heuristic function: \(h(x) \)
- \(h(x) = \text{estimate of cost to goal from } x \)
- If \(h(x) \) is 100% accurate, then we can find the goal in \(O(bd) \) time

- How do we use this?
Greedy Best First Search

- Expand node with lowest \(h(x) \)
- (Implement priority queue on \(h \))
- Optimal if \(h(x) \) is 100% correct
- How can we get into trouble with this?

What Price Greed?

What’s broken with greedy search?
Best-First ≠ Efficiency

Local-minimum problem

\[f(N) \text{ (priority in priority queue)} = h(N) = \text{straight distance to the goal} \]

A*

- Path cost so far: \(g(x) \)
- Total cost estimate: \(f(x) = g(x) + h(x) \)
- Maintain frontier as a *priority queue* (on \(f \))
- \(O(bd) \) time if \(h \) is 100% accurate
- We want \(h \) to be an *admissible* heuristic
- Admissible: never overestimates cost
- Why admissible?
 (guarantees optimality, completeness of A*)
8-Puzzle Heuristics

- $h_1(N) = \text{number of misplaced tiles} = 6$
 - is admissible

- $h_2(N) = \text{sum of the (Manhattan) distances of every tile to its goal position}$
 - $= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$
 - is ???
8-Puzzle Heuristics

- $h_1(N) =$ number of misplaced tiles $= 6$

 is admissible

- $h_2(N) =$ sum of the (Manhattan) distances of every tile to its goal position

 $= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$

 is admissible

Robot Navigation Heuristics

Cost of one horizontal/vertical step $= 1$

Cost of one diagonal step $= \sqrt{2}$

$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$
Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$ is admissible

Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_2(N) = |x_N - x_g| + |y_N - y_g|$ is ???
Robot Navigation Heuristics

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

$h_2(N) = |x_N - x_p| + |y_N - y_p|$ is admissible if moving along diagonals is not allowed, and not admissible otherwise.

$h^*(l) = 4\sqrt{2}$
$h_2(l) = 8$

Robot Navigation
Robot Navigation

\[f(N) = h(N), \text{ with } h(N) = \text{Manhattan distance to the goal} \]
\[\text{(greedy, not A*)} \]
Robot Navigation

\[f(N) = g(N) + h(N), \text{ with } h(N) = \text{Manhattan distance to goal} \]

\[(A^*) \]

Some A* Properties

- Admissibility implies \(h(x) = 0 \) if \(x \) is a goal state
- Above implies \(f(x) = \text{true cost to goal} \) if \(x \) is a goal state and \(x \) is popped off the queue

- What if \(h(x) = 0 \) for all \(x \)?
 - Is this admissible?
 - What does the algorithm do?
Result #1

A* is complete and optimal

[This result holds if nodes revisiting states in are not discarded – otherwise you might find a shortcut and then discard it.]

Proof (1/2)

• If a solution exists, A* terminates and returns a solution

- For each node N on the frontier,
 \[f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon, \]
 where d(N) is the depth of N in the tree

Note: \(\epsilon \) is the minimum cost arc
Proof (1/2)

- If a solution exists, A* terminates and returns a solution

 - For each node N on the frontier, $f(N) = g(N) + h(N) \geq g(N) \geq d(N) \times \epsilon$, where $d(N)$ is the depth of N in the tree.

 - As long as A* hasn’t terminated, a node K on the frontier lies on a solution path.

- Since each node expansion increases the length of one path, K will eventually be selected for expansion, unless a solution is found along another path.
Proof (2/2)

- Whenever A* pops a goal node, the path to this node is optimal
 - C^* = cost of the optimal solution path
 - G': non-optimal goal node in the frontier
 - $f(G') = g(G') + h(G') = g(G') > C^*$
 - A node K in the frontier lies on an optimal path:
 - $f(K) = g(K) + h(K) \leq C^*$
 - So, G' will not be selected for expansion

What to do with revisited states?

The heuristic h is clearly admissible
What to do with revisited states?

- Not harmful to discard a node revisiting a state if cost of the new path state is \geq cost of previous path. [so, in particular, one can discard a node if it re-visits a state already visited by one of its ancestors – compare w/DFS]

- If A* pushes revisited states, it remains optimal, but states may be re-visited multiple times. [the size of the search tree can be exponential in number of visited states]

- Fortunately, for a large family of admissible heuristics – consistent heuristics – there is a much more efficient way to handle revisited states.
Consistent Heuristic

• An admissible heuristic h is consistent (or monotone) if for each node N and each child N' of N: $h(N) \leq c(N,N') + h(N')$

> Intuition: a consistent heuristic becomes more precise as we get deeper in the search tree

Consistency Violation

If h tells us that N is 100 units from the goal, then moving from N along an arc costing 10 units should not lead to a node N' that h estimates to be 10 units away from the goal.
Consistent Heuristic (alternative definition)

- A heuristic h is **consistent** (AKA monotone) if
 1. for each node N and each child N' of N:
 \[h(N) \leq c(N,N') + h(N') \]
 2. for each goal node G:
 \[h(G) = 0 \]

Admissibility and Consistency

- Any consistent heuristic is also admissible

- An admissible heuristic may not be consistent, but many admissible heuristics are
8-Puzzle

- $h_1(N) =$ number of misplaced tiles
- $h_2(N) =$ sum of the (Manhattan) distances of every tile to its goal position

are both consistent (why?)

Reasoning About Consistency

- Example: Manhattan Distance in 8-puzzle
 - $MD(N,G) \leq MD(N,N') + MD(N',G)$
 - $h(N) = MD(N,G)$
 - $h(N') = MD(N',G)$
 - $h(N) \leq MD(N,N') + h(N')$
 - $C(N,N') \geq MD(N,N')$
 - $h(N) \leq C(N,N') + h(N')$

- **Note:** Not just showing that h obeys triangle inequality between pairs of states and goal since actual cost c, comes into play
Robot Navigation

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = $\sqrt{2}$

If moving along diagonals is not allowed, and
not consistent otherwise

\[h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2} \]
\[h_2(N) = |x_N - x_g| + |y_N - y_g| \]

is consistent
is consistent if moving along diagonals is not allowed, and
not consistent otherwise

Result #2

- If \(h \) is consistent, then whenever \(A^* \)
 expands a node, it has already found an
 optimal path to this node’s state
Proof (1/2)

1. Consider a node N and its child N'
 Since h is consistent: $h(N) \leq c(N,N') + h(N')$

 $$f(N) = g(N) + h(N) \leq g(N) + c(N,N') + h(N') = f(N')$$
 So, f is non-decreasing along any path

Proof (2/2)

2. If a node K is selected for expansion, then any other node N in the frontier has $f(N) \geq f(K)$

 - If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:
 $$f(N') \geq f(N) \geq f(K) \text{ and } h(N') = h(K)$$
 So, $g(N') \geq g(K)$
2. If a node K is selected for expansion, then any other node N in the fringe verifies $f(N) \geq f(K)$.

If one node N lies on another path to the state of K, the cost of this other path is no smaller than that of the path to K:

- $f(N') \geq f(N) \geq f(K)$ and $h(N') = h(K)$
- So, $g(N') \geq g(K)$

Result #2

If h is consistent, then whenever A* expands a node, it has already found an optimal path to this node’s state.

Implication of Result #2

The path to N is the optimal path to S.

N can be discarded.

N₁ can be discarded.

S₁
Revisited States with Consistent Heuristic (Modified Search Algorithm #3)

• When a node is expanded, store its state into VISITED
• When a new node N' is generated:
 – If $\text{STATE}(N')$ is in VISITED, discard N'
 – If there exists a node N'' in the frontier such that $\text{STATE}(N'') = \text{STATE}(N')$, discard the node N' or N''
 – with the largest f (or, equivalently, g)

Note: Checking frontier can save unnecessary node expansions, But skipping checking does not impact optimality or completeness

Heuristic Accuracy

• Let h_1 and h_2 be two consistent heuristics such that for all nodes N:
 $h_1(N) \leq h_2(N)$

• h_2 is said to be more accurate than (or more informed than or dominates) h_1

<table>
<thead>
<tr>
<th>STATE(N)</th>
<th>Goal state</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 4 7 3 6</td>
<td>1 2 3 4 5</td>
</tr>
</tbody>
</table>

• $h_1(N) =$ number of misplaced tiles
• $h_2(N) =$ sum of distances of every tile to its goal position

• h_2 is more accurate than h_1
Result #3

• Let h_2 be more accurate than h_1
• Let A_1^* be A^* using h_1
 and A_2^* be A^* using h_2
• Whenever a solution exists, all the nodes
 expanded by A_2^*, except possibly for some
 nodes such that
 $f_1(N) = f_2(N) = C^*$ (cost of optimal solution)
 are also expanded by A_1^*

Proof

• C^* = cost of optimal solution

• Every node N such that $f(N) < C^*$ is eventually expanded. No node N such that
 $f(N) > C^*$ is ever expanded

• Every node N such that $h(N) < C^* - g(N)$ is eventually expanded. So, every
 node N such that $h(N) < C^* - g(N)$ is expanded by A_2^*. Since $h_1(N) \leq h_2(N)$, N is
 also expanded by A_1^*

• If there are several nodes N such that $f_1(N) = f_2(N) = C^*$ (such nodes include
 the optimal goal nodes, if there exists a solution), A_2^* and A_1^* may or may
 not expand them in the same order (until one goal node is expanded)
How to create good heuristics?

- By solving relaxed problems at each node
- In the 8-puzzle, the sum of the distances of each tile to its goal position (h_2) corresponds to solving 8 simple problems:

 ![8-puzzle diagram](image)

 - It ignores negative interactions among tiles

Can we do better?

- For example, we could consider two more complex relaxed problems:

 ![Complex relaxed problems diagram](image)

 - $h = d_{1234} + d_{5678}$ [disjoint pattern heuristic]
- How to compute d_{1234} and d_{5678}?
Can we do better?

- For example, we could consider two more complex relaxed problems:
 \[d_{1234} = \text{length of the shortest path to move tiles 1, 2, 3, and 4 to their goal positions, ignoring the other tiles} \]
 \[d_{5678} = \text{disjoint pattern heuristic} \]

\[\Rightarrow \text{Several order-of-magnitude speedups for the 15- and 24-puzzle (see R\&N)} \]

\[\Rightarrow h = d_{1234} + d_{5678} \] [disjoint pattern heuristic]

- These distances are pre-computed and stored
 [Each requires generating a tree of 3,024 nodes/states (breadth-first search)]

Effective Branching Factor

- Used as measure the effectiveness of \(h \)
- Let \(n \) be the total number of nodes expanded by \(A^* \) for a particular problem and \(d \) the depth of the solution
- The effective branching factor \(b^* \) is defined by fitting: \(n = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d \)
Experimental Results

(see R&N for details)

• 8-puzzle with:
 – $h_1 =$ number of misplaced tiles
 – $h_2 =$ sum of distances of tiles to their goal positions

• Random generation of many problem instances

• Average effective branching factors (number of expanded nodes):

<table>
<thead>
<tr>
<th>d</th>
<th>IDDFS</th>
<th>A_1^*</th>
<th>A_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td>6</td>
<td>2.73</td>
<td>1.34</td>
<td>1.30</td>
</tr>
<tr>
<td>12</td>
<td>2.78 (3,644,035)</td>
<td>1.42 (227)</td>
<td>1.24 (73)</td>
</tr>
<tr>
<td>16</td>
<td>--</td>
<td>1.45</td>
<td>1.25</td>
</tr>
<tr>
<td>20</td>
<td>--</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td>24</td>
<td>--</td>
<td>1.48 (39,135)</td>
<td>1.26 (1,641)</td>
</tr>
</tbody>
</table>

Memory-bounded Search: Why?

• We run out of memory before we run out of time

• Problem: Need to remember entire search horizon

• Solution: Remember only a partial search horizon

• Issue: Maintaining optimality, completeness
• Issue: How to minimize time penalty
• Details: Not emphasized in class, but worth a skim so that you are aware of the issues
Iterative Deepening A* (IDA*)

- Idea: Reduce memory requirement of A* by applying cutoff on values of f
- Consistent heuristic function h
- Algorithm IDA*:
 - Initialize cutoff to f(initial-node)
 - Repeat:
 - Perform cost-limited search by expanding all nodes N such that f(N) ≤ cutoff
 - Reset cutoff to smallest value f of non-expanded (leaf) nodes

Advantages/Drawbacks of IDA*

- Advantages:
 - Still complete and optimal
 - Requires less memory than A*
 - Avoids the overhead to sort the frontier (priority queue)
- Drawbacks:
 - Discards a lot of information when it restarts
 - Available memory is poorly used
 - IDDFS expands factor of b more nodes at each iteration; not guaranteed here
RBFS

- Recursive best first search
- Objective: Linear space without discarding as much information as IDA*

- Idea: Remember best alternative
- Rewind, try alternatives if “best first” path gets too expensive
- Remember costs on the way back up

Assume $h=1$, initially along this path.

Replace with $f=11$.

Return to best alternative.

Problem: Thrashing!
SMA*

- Idea: Use all of available memory
- Discard the worst leaf when memory starts to run out, to make room for new leaves
- Values get backed up to parents
- Optimal if solution fits in memory
- Complete
- Thrashing still possible

Replace with \(f=4 \)

Recap

- Heuristics change how we think about search
- A* is optimal, complete
- Dramatic improvements in efficiency possible with good heuristics

- Many extensions possible, e.g., dealing with limited memory