
Image Differentiation and Image Pyramids

Carlo Tomasi

February 4, 2021

This note discusses image differentiation, which is useful for edge detection, image motion
analysis, and other purposes; and the analysis of images at multiple scales through image pyramids.

1 Image Differentiation

Many image operations, including edge detection and motion analysis in video, require computing
the derivatives of image intensity with respect to the horizontal (x) or vertical (y) direction. This
stands to reason: Edges are curves on the image plane across which image intensity changes rapidly
(the derivative is large); Motion is computed by comparing changes over time (time derivative) with
changes over image space (spatial derivatives).

However, since images are defined on discrete domains, “image differentiation” is undefined. To
give this notion some meaning, we think of images as sampled versions of continuous1 distributions
of brightness. This indeed they are: the distribution of intensities on the sensor is continuous, and
the sensor integrates this distribution over the active area of each pixel and then samples the result
at the pixel locations.

“Differentiating an image” means to compute the samples of the derivative of the continuous
distribution of brightness values on the sensor surface.

Since we only have access to the digital image, differentiation involves, at least conceptually,
undoing sampling (that is, computing a continuous image from a discrete one), differentiating, and
sampling again. The process of undoing sampling is called interpolation if the continuous function
is required to pass through the samples, and fitting otherwise. Figure 1 shows a conceptual bloc
diagram for the computation of the image derivative in the x (or c) direction.

Interpolation or fitting can be expressed as a hybrid-domain convolution, that is, a convolution
of a discrete image with a continuous kernel. This is formally analogous to a discrete convolution,
but has a very different meaning:2

C(x, y) =

∞∑
i=−∞

∞∑
j=−∞

I(i, j)P (x− j, y − i)

1“Continuous” here refers to the domain: we are talking about functions of real valued variables.
2For simplicity, we assume that the x and y axes have the same origin and direction as the j and i axes: to the

right and down, respectively. Functions of discrete variables have the row argument first, and the column argument
second. Functions of continuous variables have the horizontally varying argument first, and the vertically varying
argument second.

1



I(r, c) C(x, y) D(x, y) Ix(r, c)
i

Figure 1: Conceptual bloc diagram for the computation of the derivative of image I(r, c) in the
horizontal (c) direction. The first block interpolates or fits the samples from a discrete to a con-
tinuous domain. The second computes the partial derivative in the horizontal (x) direction. The
third block samples from a continuous domain back to a discrete one.

where x, y are real variables and P (x, y) is called the interpolation (or fitting) kernel. The key
difference with respect to the convolution we are familiar with is that now P is a function of real
variables, P : R × R → R, rather than a function of integer variables, H : Z × Z → R. As a
consequence, the output C is now also a function of real variables.

This hybrid convolution seems hard to implement: how can we even represent the output, a
function of two real variables, on a computer? However, the chain of the three operations depicted
in Figure 1 goes from discrete-domain to discrete-domain. As we now show, the transformation
performed by the whole chain (but not its individual links) can be implemented easily and without
reference to continuous-domain variables.

Since both interpolation (or fitting) and differentiation are linear, instead of interpolating (or
fitting) the image and then differentiating we can interpolate (or fit) the image with the derivative
of the interpolation (or fitting) function. Formally,

D(x, y) =
∂C

∂x
(x, y) =

∂

∂x

∞∑
i=−∞

∞∑
j=−∞

I(i, j)P (x− j, y − i)

=

∞∑
i=−∞

∞∑
j=−∞

I(i, j)Px(x− j, y − i)

where

Px(x, y) =
∂P

∂x
(x, y)

is the partial derivative of P (x, y) with respect to x. This change in the position of the differentiation
operator is crucial, as it changes the problem from one of differentiating an arbitrary signal C(x, y)
to one of differentiating a known, simple kernel function P (x, y).

Finally, we need to sample the result D(x, y) at the grid points (r, c) to obtain a discrete image
Ic(r, c). This yields the final, discrete convolution that computes the derivative of the underlying
continuous image with respect to the horizontal variable:3

J(r, c) =

∞∑
i=−∞

∞∑
j=−∞

I(i, j)Px(c− j, r − i) .

Note that all continuous variables have disappeared from this expression: this is a standard,
discrete-domain convolution, so we can implement this on a computer without difficulty. In other

3Again, c and r are assumed to have the same origin and orientations as x and y.

2



words, while some of the steps in the chain of operations in Figure 1 are potentially problematic in
terms of implementation, the transformation performed by the chain as a whole is a simple, discrete
convolution of the type we are familiar with.

The correct choice for the function P (x, y) is outside the scope of this course, but it turns
out that the truncated Gaussian function is adequate, as it smooths the data (through fitting,
not interpolation) and therefore improves the signal-to-noise ratio. We therefore let P̃ be the
(unnormalized) Gaussian function of two continuous variables x and y:

P̃ (x, y) = G(x, y)

and P̃x, P̃y its partial derivatives with respect to x and y (Figure 2). We then sample P̃x and P̃y
over a suitable interval [−n, n] of the integers and normalize them by requiring that their response
to a linear ramp (a function that is linearly increasing in one direction and constant in the other)
yield the slope of the ramp itself.

The ramp is the simplest function with nonzero derivative, and we use it as a “probing function”
since we know the desired derivative. This normalization ensures that derivatives are not scaled
up or down: The derivative of x is 1, not just some constant. A unit-slope, discrete ramp in the j
direction is represented by

u(i, j) = j

and we want to find a constant u0 such that

u0

n∑
i=−n

n∑
j=−n

u(c− j, r − i)P̃x(j, i) = 1

for all r, c so that

Px(x, y) = u0 P̃x(x, y) and Py(x, y) = u0 P̃y(x, y) .

The derivative of u(i, j) is the same everywhere, so we only need to test the output of the
convolution at one point. In particular, for r = c = 0 (the simplest choice) we obtain

u0 = − 1∑n
i=−n

∑n
j=−n jP̃x(j, i)

. (1)

Since the partial derivative Gx(x, y) of the Gaussian function with respect to x is negative for
positive x (or j), the product jGx(j, i) is either zero or positive and the constant u0 is positive. By
symmetry, the same constant normalizes Gy.

Of course, since the two-dimensional Gaussian function is separable, so are its two partial
derivatives:

Ic(r, c) =
n∑

i=−n

n∑
j=−n

I(r − i, c− j)Gx(j, i) =

n∑
j=−n

d(j)
n∑

i=−n
I((r − i, c− j)g(i)

where

d(x) =
dg

dx
= − x

σ2
g(x)

is the ordinary derivative of the one-dimensional Gaussian function g(x). A similar expression holds
for Ir(r, c) (see below).

3



Figure 2: The partial derivatives of a Gaussian function with respect to x (left) and y (right)
represented by plots (top) and isocontours (bottom). In the isocontour plots, the x variable points
horizontally to the right, and the y variable points vertically down.

Thus, the partial derivative of an image in the x direction is computed by convolving4 with d(j)
and g(i). The partial derivative in the y direction is obtained by convolving with d(i) and g(j). In
both cases, the order in which the two one-dimensional convolutions are performed is immaterial,
because convolution commutes:

Ic(r, c) =
n∑

i=−n
g(i)

n∑
j=−n

I(r − i, c− j)d(j) =
n∑

j=−n
d(j)

n∑
i=−n

I(r − i, c− j)g(i)

Ir(r, c) =

n∑
i=−n

d(i)

n∑
j=−n

I(r − i, c− j)g(j) =

n∑
j=−n

g(j)

n∑
i=−n

I(r − i, c− j)d(i) .

Normalization can also be done separately: the one-dimensional Gaussian g is normalized as
shown in a previous note, and the one-dimensional Gaussian derivative d is normalized by the
one-dimensional equivalent of equation (1):

d̃(u) = ue−
1
2(uσ )

2

kd =
1∑n

v=−n vd̃(v)

d(u) = −kdd̃(u) .

4Consistently with our definition of the reference axes, functions of j are row vectors, and functions of i are column
vectors.

4



We can summarize this discussion as follows.

The “derivatives” Ic(r, c) and Ir(r, c) of an image I(r, c) in the horizontal (to the right) and
vertical (down) direction, respectively, are approximately the samples of the derivative of
the continuous distribution of brightness values on the sensor surface. The images Ic and
Ir can be computed by the following convolutions:

Ic(r, c) =
n∑

i=−n
g(r − i)

n∑
j=−n

I(i, j)d(c− j) =
n∑

j=−n
d(c− j)

n∑
i=−n

I(i, j)g(r − i)

Ir(r, c) =
n∑

i=−n
d(r − i)

n∑
j=−n

I(i, j)g(c− j) =
n∑

j=−n
g(c− j)

n∑
i=−n

I(i, j)d(r − i) .

In these expressions,

g(u) = kg g̃(u) where g̃(u) = e−
1
2(uσ )

2

and kg =
1∑n

v=−n g̃(v)

and

d(u) = kdd̃(u) where d̃(u) = ue−
1
2(uσ )

2

and kd = − 1∑n
v=−n vd̃(v)

.

The constant σ determines the amount of smoothing performed during differentiation: the
greater σ, the more smoothing occurs. The integer n is proportional to σ, so that the effect
of truncating the Gaussian function is independent of σ.

The Image Gradient

A value of the partial derivative Ix and one of Iy can be computed at every image position5 (x, y),
and these values can be collected into two images. Two sample images are shown in Figure 3 (c)
and (d).

A different view of a detail of these two images is shown in Figure 4 in the form of a quiver
diagram. For each pixel (x, y), this diagram shows a vector with components Ix(x, y) and Iy(x, y).
The diagram is shown only for a detail of the eye in Figure 3 to make the vectors visible.

The two components Ix(x, y) and Iy(x, y) considered together as a vector at each pixel form the
gradient of the image,

g(x, y) = (Ix(x, y), Iy(x, y))T .

The gradient vector at pixel (x, y) points in the direction of greatest change in I, from darker to
lighter. The magnitude

g(x, y) = ‖g(x, y)‖ =
√
I2x(x, y) + I2y (x, y)

5We assume to pad images by replication, rather than with zeros, beyond their boundaries to prevent large spurious
derivatives there.

5



(a) (b)

(c) (d)

Figure 3: (a) Image of an eye. See Figure 4 for a different view of the detail in the box. (b) The
gradient magnitude of the image in (a). Black is zero, white is large. (c), (d) The partial derivatives
in the horizontal (c) and vertical (d) direction. Gray is zero, black is large negative, white is large
positive. Recall that a positive value of y is downwards.

6



Figure 4: Quiver diagram of the gradient in the detail from the box of Figure 3 (a). Note the long
arrows pointing towards the bright glint in the eye, and those pointing from the pupil and from
the eyelid towards the eye white.

7



of the gradient is the local amount of change in the direction of the gradient, measured in gray
levels per pixel. The (total) derivative of image intensity I along a given direction with unit vector
u is the rate of change of I in the direction of u = (u, v). This can be computed from the gradient
by noticing that the coordinates p = (x, y)T of a point on the line through p0 = (x0, y0)

T and
along u are

p = p0 + tu that is,
x = x0 + tu
y = y0 + tv

,

so that the chain rule for differentiation yields

dI

dt
=
∂I

∂x

∂x

∂t
+

∂I

∂y

∂y

∂t
= Ixu+ Iyv .

In other words, the derivative of I in the direction of the unit vector u is the projection of the
gradient onto u:

dI

dt
= gTu . (2)

2 The Gaussian Image Pyramid

It is often useful to analyze an image I(x) at different scales. One can then form a stack of images
obtained by repeatedly blurring the input image:

B0 = I

B` = B`−1 ∗ Sσ for ` = 1, . . . , L (3)

where Sσ(x) is a smoothing kernel, typically a Gaussian with width σ, and the symbol ’∗’ denotes
convolution. The larger σ, the more high-frequency information (that is, fine detail) is suppressed
at every level of smoothing, and analysis of B` reveals finer or coarser structures in the image
depending on the value of the level `. Figure 5 shows the result of blurring an input image L = 7
times with a Gaussian kernel with σ = 2 pixels. Note the loss of detail at higher levels (` > 0) of
the stack.

The convolution of a Gaussian with parameter σ1 with another Gaussian with parameter σ2 is
a Gaussian with parameter σ =

√
σ21 + σ22. Because of this, convolving an image ` times with a

Gaussian with parameter σ is the same as convolving the same image once with a Gaussian with
parameter

σ` =
√
`σ

for each `. So we can also write

B0 = I

B` = B0 ∗ Sσ` for ` = 1, . . . , L .

Of course, the iterative smoothing procedure (3) is more efficient, because the kernels are smaller.
The pixel resolution of the images in the stack is high when compared to the spatial frequencies

contained in the images for ` > 0: There are many pixels even if the image brightness changes
slowly over space. Because of this, the blurred images B` can be sampled after filtering without
significant loss of information. Without getting into the quantitative aspects of sampling and image

8



Figure 5: A Gaussian stack.

bandwidth, it turns out that most of the image information is preserved if every time the image
is blurred with a Gaussian filter with parameter σ, the image is subsampled by a factor of about
σ/1.6.

When s = σ/1.6 is an integer number, it is clear what this sampling means: Filter with a
Gaussian with parameter σ, then retain every s-th pixel in each dimension. When s is not an
integer, on the other hand, sampling “every s pixels” entails retrieving image values between the
values available in the image array. This can be done by sub-pixel interpolation, which requires
a model for the continuous image that the array values are samples of. One of the simplest
such models is the bilinear one, in which the underlying continuous image I(x) is assumed to be
separately linear in x and y, the two components of x, between integer values of the coordinates.
This model leads to bilinear interpolation: Let x = (x, y), and (with b·c denoting the floor function)

ξ = bxc , η = byc
∆x = x− ξ , ∆y = y − η .

Then,

I(x) = I(ξ, η) (1−∆x) (1−∆y)

+ I(ξ + 1, η) ∆x (1−∆y)

+ I(ξ, η + 1) (1−∆x) ∆y

+ I(ξ + 1, η + 1) ∆x∆y .

We can now sample the image I with any sampling period, integer or otherwise.
We encapsulate the operations of filtering followed by sampling into a single function

B = resize(I, φ)

9



where the downsampling factor φ = 1/s is a positive real number that denotes the ratio between
the size of B and that of I (in each of the two coordinate dimensions). For values 0 < φ < 1, the
image shrinks. The filter in downsampling is Gaussian with parameter

σ = 1.6/φ .

Figure 6 shows an example of the effects of resizing an image with and without smoothing. To
make the differences more obvious, a large sampling factor was used. This Figure shows that if an
image is sampled without first blurring it, neighboring pixels in the reduced-size image may come
from parts of the image that have nothing to do with each other in the scene, and this leads to the
jagged, disorganized appearance in panel (b) of the Figure. Blurring ensures that each sampled
pixel summarizes the average values in an image neighborhood that matches the sampling factor.
While the reduced-size image in (c) is blurred relative to the original in (a), whatever information
is left is more clearly related to the original. The phenomenon that degrades the image in (b) is
called aliasing in the literature.

Replacing convolution with Sσ with resize(·, φ) where 0 < φ < 1 in equation (3) yields the
Gaussian pyramid :

G0 = I

G` = down(G`−1) for ` = 1, . . . , L . (4)

In the last expression, we think of fixing φ to some value between 0 and 1 (for instance, φ = 1/2)
and define

down(X) = resize(X,φ) .

We will sometimes also need
up(X) = resize(X, 1/φ)

where down and up use the same value of φ. When the second argument to resize is greater than
one, as it is in up, the function resize performs no filtering. This is because there is no information
to suppress when going up in resolution, and there is no way to make up information that is not
there. With up, the image grows larger rather than smaller.

The two operations down and up are called downsampling and upsampling. There is a crucial
difference between the two: Downsampling blurs the input image with a Gaussian and then samples
it by bilinear interpolation to make it smaller. Upsampling merely resamples the input image on a
finer grid, but it does not undo the blurring, and the extra pixel values in up(X) are merely “made
up” by bilinear interpolation. So X and up(X) contain the same frequencies (same level of detail),
but the latter has more pixels than the former.

Since the image shrinks at each level, it is no longer necessary to specify the maximum level
L: once the image shrinks so much that it becomes smaller than the Gaussian kernel (about
blog1/φ(min(R,C))c − 1 steps, where R and C are the number of rows and columns of I), the
procedure stops.

Figure 7 shows the Gaussian pyramid for the same input image used for the Gaussian stack
in Figure 5 and for φ = 1/2. The input image has R = 365 rows and C = 384 columns, and the
pyramid has L = 7 levels (plus the input image itself).

The Gaussian pyramid is said to be a lowpass pyramid, in that every level contains all the image
frequencies below some value, roughly proportional to φ`.

10



(a)

(b) (c)

Figure 6: An illustration of aliasing. The image in (a) was just resampled in (b) and instead
downsized by blurring and resampling in (c). The original image has 2448× 3264 pixels, and is not
shown to scale with the other two images. For both (b) and (c), the sampling factor is φ = 1/30.

11



Figure 7: A Gaussian pyramid.

12


	Image Differentiation
	The Gaussian Image Pyramid

