
Deep Learning: Basic Concepts

February 8, 2023

This note introduces the problems of classification and regression in machine learning, and then
discusses issues related to the data that are necessary to train these predictors. Basic architectures
of neural networks are described next, followed by a discussion of general principles underlying their
training. Back-propagation (a specific training algorithm) and more task-specific neural network
architectures will be discussed in subsequent notes.

1 Classification and Regression

Machine learning develops algorithms that discover patterns in data. Consider the following ex-
amples of two different types of supervised machine learning, classification and regression, drawn
from computer vision.

Examples:

• Classification: The US Postal Service (USPS) uses digit recognition, a machine learning technique, to read hand-
written ZIP codes on envelopes. Given the image X of a single digit, a classifier h outputs a label out of the set
Y = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} that tells what digit the image represents.

• Regression: A self-driving vehicle must know where potential obstacles are in its immediate surroundings. These
obstacles include other vehicles, pedestrians, and any object that can potentially obstruct the vehicle’s path. Given
the position of an object in the image taken by one of the car’s cameras at some point in time, a tracker h, which
is an example of a regressor, outputs the object’s position in a new image X taken a fraction of a second later.
This position is a value out of a set Y ⊂ R2.

In both examples, the predictor is a function h : X → Y from the set X of all possible images
that are relevant to the task (handwritten digits, traffic scenes). The difference between classifica-
tion and regression is that h outputs a categorical variable for classification and a real-valued vector
for regression. This means that the label set Y is finite and unstructured for classification, while
for regression Y is an uncountable subset of Re for some integer e > 0.

In terms of definitions, the difference between classification and regression is minor. In practice,
however, the finite nature of the label set often suggests techniques for classification that could not
be applied to regression. Conversely, regression techniques often rely on a metric defined in Y ,
and these techniques cannot be used for classification. The separation between regression and
classification is not always crisp, as some machine learning algorithms can be adapted to either
type of problem with minor changes. As we will see, this is the case for deep-learning methods.

2 The Training Set

To train the digit classifier, the USPS provides many thousands or even millions of digit images,
and someone looks at each image and records a label for it. To train the object tracker, the car

1

manufacturer provides hours of video. Once an object of interest is found in a frame of the video,
someone draws a box around it in that frame and in subsequent ones.

The product of this painstaking work is a training set of the form

T = {(x1, y1), . . . , (xN , yN)} with xn ∈ X and yn ∈ Y ,

where each data point xn is an input to the predictor and yn is the corresponding desired output.
In the digit recognition example, xn is an image and yn is a digit label. In the tracking example,
xn is perhaps the new video frame together with the position of the object in the old frame, and
yn is the object’s position in the new frame.

Each of the thousands or millions of ordered pairs (xn, yn) is called a training sample. The set
X is the data space and the set Y is called the label set for a classifier and the value set for a
regressor. When the distinction between classification and regression is ignored, the term “target”
is sometimes used to denote either a label or a value.

3 Data Annotation

In the days of Google Images and web crawlers, collecting data for training is often but not always
inexpensive. Data annotation, on the other hand, that is, the process of associating targets to
data, is invariably a time consuming, expensive, and error-prone activity. The high cost of data
annotation is arguably the main hurdle to a broader use of machine learning and especially of deep
learning, whose predictors require large amounts of data to be trained.

For instance, to produce the images xn for digit classification, one could place a camera above
one of the conveyer belts that move envelopes around in a USPS distribution center, and take a
picture of each envelope. That picture, however, contains much more than a digit, and someone
must therefore sit at a computer, display each envelope image on the screen in turn, drag a bounding
box around each digit with a mouse, save each cropped digit as a separate image file, and associate
a label yn to the file through some user interface.

Different images may have different quality depending on factors such as lighting, the ink used
to write the digit, the color of the envelope paper, the size of the digit, and so forth. In addition,
the digit images may be cropped inconsistently if the operator gets tired, or multiple operators are
employed to crop and label images.

These inconsistencies often make machine learning harder, and training sets are sometimes
curated because of this. In the USPS example, curation involves running manual procedures to
make the images more uniform in terms of the factors mentioned above.1 Curation helps machine
learning research by making the problem easier for initial study. However, curation cannot be used
to train real-life machine learning classifiers, because the whole point of computing h is to eliminate
manual intervention during deployment (testing). In these cases, only automatic preprocessing of
the images is a viable option, because the preprocessing can then be applied during both training
and testing. Preprocessing techniques are beyond the scope of these notes, although by now you
do know how to reduce noise by filtering or how to resize an image.

Similar complications occur for the object tracking example. In that case, the fact that positions
are real-valued makes it even harder for a person to determine the correct position, and annota-
tions for the same image by different people may be different. Even discrete labels are sometimes

1Think calibrating, touching up, and re-cropping or resizing images in Photoshop.

2

inconsistent across annotators, and various schemes have been devised to address this issue. For
instance, multiple people are sometimes employed to annotate each training sample, and a majority
vote (for classification) or a mean or median (for regression) then determines the “correct” target.

A common method for labeling large amounts of data is to publish it to the Amazon Mechanical
Turk, an online marketplace for any type of repetitive work, including image labeling. People
around the world access the marketplace searching for jobs they can perform and are paid a small
amount per label. Recently, many companies have sprung up that offer labeling services for a fee.
Others provide software platforms that make labeling easier for the user. An example of a labeling
company is Hive and V7 Labs’ Darwin is a sample annotation platform.

4 Deep Neural Networks

A deep neural network implements a function that takes an input x and outputs a target value2

ŷ. Inputs are often images. Neural networks output (vectors of) real values, so they are a natural
match for regression. When the desired output is a label, that is, a member of a discrete set, the
network computes a score for each possible label. An arg max operator at the output then returns
the label with highest score. For instance, the network of a digit classifier computes a vector p of
ten scores p0, . . . , p9, one per digit, and the answer is

ŷ = arg max
k

pk ,

the digit that receives the highest score.
Because of this, networks for regression are essentially the same as networks for classification,

except that the latter have an arg max operation at their output3.
Neural networks are parametric, in that their behavior depends on the values of a large number

of weights, which are numerical parameters whose values are determined when a network is trained.
In this Section we ignore training, and the values of the weights are therefore not determined.
Principles for choosing their values are discussed in Section 5, while a specific training algorithm
will be the subject of a later note.

Section 4.1 describes deep neural networks in general and Section 4.2 shows how to convert a
regression network to a classifier. A later note describes deep convolutional neural networks, which
are predominant in computer vision applications of deep learning.

4.1 The Generic Architecture of a Neural Network

A neural network is a cascade of layers, in which each layer’s output is fed to the subsequent layer,
and each layer is a set of neurons. The network is deep if it has many layers. We describe neurons
first and layers and complete networks thereafter.

Neurons A neuron (in the computational sense) is a function Rd → R of the form

y = ρ(a(x)) where a = wT x̃ , x̃ =

[
x
1

]
.

2The hat distinguishes the estimate ŷ from the true target y.
3The arg max is usually not considered to be part of the network, but the literature is not consistent on this point.

3

https://www.mturk.com
https://www.mturk.com
https://thehive.ai
https://www.v7labs.com/darwin

The entries of the vector w ∈ Rd+1 are called the weights, and the activation function is a nonlinear
and weakly monotonic function R→ R. The input a(x) to ρ is called the activation of the neuron,
and the particular type of activation function

ρ(a) = max(0, a)

is called the Rectified Linear Unit (ReLU, Figure 1).

a

ρ

Figure 1: The Rectified Linear Unit (ReLU).

We view the tilde (as in x̃) as an operator: Given any vector x, this operator appends a 1 at
the end of x.

The activation can be rewritten as follows

a = vTx + b where vT = [w1, . . . , wd] and b = wd+1 ,

and is an inner product between a gain4 vector v and the input x, plus a bias b. Figure 2 shows a
neuron in diagrammatic form.

For different inputs x of the same magnitude5, the activation is maximum when x is parallel to
v, and the latter can be viewed as a pattern or template to which x is compared. The bias b then
raises or lowers the activation before it is passed through the activation function.

The ReLU will respond (that is, return a nonzero output) if the inner product vTx is greater
than −b (so that a is positive), and the response thereafter increases with the value of a. So the
negative of the bias can be viewed as a threshold that the inner product between pattern and input
must exceed before it is deemed to be significant, and the neuron can be viewed as a score function
that measures the similarity of the suitably normalized input x to the pattern v when the similarity
is significant (that is, greater than −b). When the similarity is not significant, the neuron does not
respond.

A pattern classifier would add a stage that decides if the score is large enough to declare the
input x to contain the pattern represented by v. So another way to view a neuron is a pattern
classifier without the decision stage. This “interpretation” of a neuron has only psychological
usefulness. Mathematically and even practically, all that really matters is that with enough layers
with enough neurons one can implement very complex functions.

Layers A neural-net layer is a vector of e neurons, that is, a function Rd → Re

y = ρ(a(x)) where a(x) = W x̃ ,

the weight matrix W is e × (d + 1), and the activation function ρ is applied to each entry of the
activation vector a(x) ∈ Re. So a neural-net layer can be viewed as a bank of pattern scoring
devices, one pattern per neuron. Figure 3 illustrates.

4Gains are often called weights as well.
5As measured by their Euclidean norm ‖x‖.

4

+
1

...
vdv1

b

xdx1

a

y

y

x

Figure 2: The internal structure of a neuron (left) and a neuron as a black box (right). The black
box corresponds to the part inside the dashed rectangle on the left.

y
1

x

e
y y

x

Figure 3: The internal structure of a layer (left) and a layer as a black box (right). The black box
corresponds to the part inside the dashed rectangle on the left.

5

To compute the output of a layer from its input one needs to perform ed multiplications and
as many additions to compute the activation vector, and then compute the activation function e
times. So if e is of the same order of magnitude as d, the cost of this computation is quadratic in
the size d of the input x. Even more importantly, there are O(d2) parameters (the entries of W)
that need to be determined when the layer is trained.

Networks A generic neural network is simply a cascade of layers, in which each layer takes the
output of the previous layer as its input. Each neuron of each layer has weights (several gains and
a bias), and it is useful to collect all the weights of layer number ` into a column vector w`. A
network with L layers then has weight vector

w =

 w1
...

wL

 .

Training a neural network amounts to determining values for w so that the network’s outputs
are consistent with those specified in a training set, as discussed in general terms in Section 5.
Consistency here entails that if ŷn = h(xn; w) is the target estimate that the network computes on
training data point xn, then ŷn should be close, on average, to the true target yn for that sample.
A specific algorithm for training a network, called back-propagation, will be discussed in a later
note.

4.2 Converting a Regression Network to a Classifier

The output from a deep CNN is fed to a computation that depends on the purpose of the net. For
regression, for instance, the outputs may be used as they are. For classification, the last stage is
typically chosen so that it outputs a vector of activations that has as many entries as there are
labels in the label set Y . These activations are real numbers.

Training is easier to formulate, as we will see, if these numbers are positive and add up to one,
so that it is easier to compare these numbers to each other during training. Because of this, the
output from the last layer of a network that is to be used for classification is fed to a so-called
softmax function. Let p be the network output. Then the softmax function is

zk = σk(p) =
exp(pk)∑K
j=1 exp(pj)

for k = 1, . . . ,K

and where K is the number of labels in Y . The exponential makes all quantities positive, and
normalization makes sure the entries of the output vector z = (z1, . . . , zK) add up to 1. In this
way, the entries of the softmax output can be viewed as scores for each of the categories, and the
result of classification is then class

ŷ = h(x; w) = arg max
k

zk .

Note that the softmax function has no parameters. From the point of view of determining the
highest activation, the softmax is irrelevant, since the exponential is a monotonically increasing
function, so that

arg max
k

zk = arg max
k

pk .

Because of this, the softmax layer is typically removed after training.

6

5 Principles of Network Training

Deep neural networks have recently been shown empirically to achieve very good performance on
tasks whose inputs are images, speech, or audio signals. They have also been applied to inputs
of other types, with varied results. The reasons why these predictors work so well are still un-
clear. What is clear is that they are very expressive, in the sense that they can implement almost
arbitrarily complex functions.

Specifically, so-called universal approximation theorems [2] show that any Lipschitz function6

from a hypercube in Rd to a hypercube in Re can be approximated arbitrarily closely (that is,
within any pre-specified ε > 0) with some neural net. As a consequence, if there exists a good
predictor for a given task, there is likely some neural network that can implement that predictor.7

Finding that network, on the other hand, is a whole different story. To understand why, we need
to look at the basics of training.

5.1 Training

When a predictor h with weights w ∈ Rm predicts value ŷ = h(x; w) for a data point x and the
true value associated with x is y, we experience a loss `(y, ŷ). The loss is zero when y = ŷ and
positive otherwise. For instance, the zero-one loss is very commonly used for classification:

`(y, ŷ) =

{
0 if ŷ = y
1 otherwise.

For regression, the quadratic loss is a popular choice:

`(y, ŷ) = (y − ŷ)2 .

The empirical risk over the training set

T = {(x1, y1), . . . , (xN , yN)} with xn ∈ X and yn ∈ Y ,

of data point/target pairs is the average loss over that set:

LT (w)
def
=

1

|T |
∑

(xn,yn)∈T

`(yn, h(xn; w)) .

Given a training set T , Empirical Risk Minimization (ERM) is the problem of finding a weight
vector ŵ with the lowest possible empirical risk8 on T :

ŵ ∈ arg min
w∈Rm

LT (w) . (1)

Notation: The quantity min
w∈Rm LT (h;w) is a single (nonnegative) number, the smallest achievable risk

over all choices of w. The notation arg min
w∈Rm LT (w) represents the set of all weight vectors in Rm that

achieve that minimal risk (there could be more than one such vector). Finally, ŵ is one of these vectors, it

does not matter which.

ERM is a fitting problem, as it seeks a parameter vector for which the function h best fits the
data in T .

6Somewhat loosely speaking, a differentiable function is Lipschitz when its gradient is uniformly bounded by a
constant. This notion can be defined more generally without reference to differentiability.

7This holds even for classifiers, since any finite label set Y can be viewed as a subset of the reals.
8We are assuming that the minimum in this expression exists. Discussion of this assumption is beyond the scope

of these notes.

7

Generalization What is the point of fitting a predictor to a training set T if we only look at
how well the predictor does on that set, as the risk LT does? A predictor estimates a value ŷn
from a training data point xn, but we already know the correct answer yn. What is the point of
estimating the answer again?

This question goes to the key difference between data fitting, or empirical risk minimization, and
machine learning: Data fitting is asked to do well on the training set, and is used when something
about the parameters of the predictor itself is of interest. Perhaps an economist postulates that
price and demand are linearly correlated, and wants to determine the regression coefficients. The
goal of such a study is not so much to predict new prices for new levels of demand, but rather to
use the slope of the regression line to understand the effects of a demand fluctuation on changes of
price.

In contrast, machine learning focuses on prediction, and is asked to do well on previously unseen
data. The parameters of the predictor are not of interest per se, and the goal is instead to estimate
values ŷ corresponding to new data points x. A predictor that does this well is said to generalize
well. Failure to generalize well can be caused by a predictor that is not flexible enough (underfitting)
or by one that is too flexible (overfitting), as we will see soon.

Statistical Risk Minimization Conceptually, one can link training data to “previously unseen
data” by assuming that all data, both those in the training set and those seen after training, are
drawn independently and at random from some joint probability distribution p(x, y) of data points
and targets called the generative model of the data, or “model” for short.

The goal of machine learning is then not to minimize the empirical risk, bur rather the statistical
risk :

Lp(w) = Ep[`(y, h(x; w))] ,

that is, the statistical expectation of the loss over the model p. This is a measure of how poorly h
does not just over the training set, but rather over all data that could possibly be drawn from the
model. The problem of machine learning is then Statistical Risk Minimization (SRM), that is, the
problem of finding

ŵ ∈ arg min
w∈Rm

Lp(w) ,

a much taller order than ERM.

Overfitting The main practical problem with SRM is that the model p is generally unknowable.
What is, for instance, the probability distribution over the set of all possible images? Or over all
possible English sentences? All we usually have is data. Even if we have large amounts of data,
estimating probability distributions over spaces with many dimensions is hopeless. Thus, for all
but the simplest cases, minimizing the statistical risk is not possible.

To see how to address this difficulty, we need to understand first what happens when training a
neural network through empirical risk minimization alone, that is, by fitting the predictor’s weights
to the training set T .

Fitting occurs through gradient descent and, more specifically, through Stochastic Gradient
Descent (SGD), because the empirical risk is the average of a large number of terms, one term per
training sample. Starting with a random initial weight vector w0, SGD applied to the empirical
risk minimization problem (1) produces a sequence of vectors

w0,w1, . . .

8

that yield values of the empirical risk LT (w) that decrease on average. Since deep networks are
very expressive, it is often possible to reduce the training risk LT (w) to zero or near zero. This
occurs because the predictor has more weights than strictly necessary to fit the training set.

This situation is to some extent analogous to what occurs when a high degree polynomial is fit
to data that approximately follow a a lower-degree polynomial. If there is any noise in the data,
that is, if y is not exactly a polynomial function of x, then the higher-degree polynomial will fit
the data including noise.

0 1
0

5

k = 1

k = 2

k = 3

k = 6

k = 9

0 2 4 6 8 10
0

0.5

1

1.5
training risk

(a) (b)

Figure 4: (a) Polynomial fits of degrees between 1 and 9 to ten training data points (blue dots).
The dots were generated with a third degree polynomial plus random noise. The third-degree
polynomial (green curve, k = 3) fits the dots well but not exactly. (b) Training risk as a function of
the degree k of the polynomial. The training risk keeps decreasing until it reaches zero for k = 9.

Consider for instance the blue dots in Figure 4 (a). These dots are our tiny training set T .
They were generated with a third degree polynomial, except that some random noise was added to
their y coordinate. The distribution of the coordinates of these dots are the generative data model
p(x, y), which is unknown to the data fitting algorithm. The green, thicker curve (k = 3) results
from fitting a third degree polynomial to the dots. The green curve fits the data quite well, but
not exactly, because of the added noise: Not all blue dots are on the green curve.

If one were to use a lower-degree polynomial, as with the yellow and purple curves for degrees
k = 1 and 2 in Figure 4 (a), underfitting would occur, that is, the curves would not pass anywhere
close to the blue dots. Higher-degree polynomials, on the other hand, do fit the data well, as shown
by the light blue and magenta curves in the Figure, corresponding to degrees k = 6 and 9.

In this analogy, the training risk, when using the quadratic loss, is the root-mean-squared
average of the vertical distances between the dots and the approximating curve. This risk is
plotted in Figure 4 (b) for the five polynomials in Figure 4 (a) plus a few more, as a function of
their degree k. The empirical training risk is large for k = 1 and 2, then drops considerably for
k = 3 and keeps decreasing after that. Since there are ten dots, a degree-9 polynomial can always
interpolate them, that is, it fits them with zero residual: The training risk is zero when k = 9, and
would remain zero even for higher degrees.

The empirical training risk when a deep network is trained by SGD follows a similar trend as a

9

function of the epoch number (as opposed to a polynomial degree) and keeps decreasing. Since the
weight vector w ∈ Rm has many entries (m is large), the empirical training risk often approaches
zero over time. We then say that the predictor has memorized the training set T , in that it is able
to give a perfect answer for all of its samples.

This is not necessarily good news. For instance, a network designed to recognize motorcycles
may have been presented a training set containing outdoor motorcycle images (with a “motorcycle”
label) and other images of different objects (“not a motorcycle” label), many of which are indoors.
Rather than learning the “concept” of motorcycle, this network may have learned that images with
a blue sky and gray asphalt on the ground must be motorcycles, simply because T is biased in
this way. The network is then unlikely to do well on new motorcycle images, when these are taken
indoors, or on non-motorcycle images taken outdoors. This biased training set is the machine
learning counterpart of the noisy data in the polynomial fitting scenario: The degree-9 polynomial
did not capture the “concept” of the third degree polynomial underlying the data, but it rather
adapted to all the oscillations caused by noise. The network (or the polynomial fit) overfit the
data.

The Validation Set One way to avoid both underfitting and overfitting for a neural network
would be to choose the number m of weights so as to match the complexity of the problem somehow.
In this way, even if training were to proceed to completion, the network would be “just right,”
analogously to the third-degree polynomial in the example above.

However, tuning the number m of weights in the predictor is difficult. First, designing a deep
network to have a predefined number m of weights is not straightforward, as we will see when we
study network architectures. In addition, knowing when m is “just right” is problematic as well:
If m were too small (underfitting), we would notice that the empirical training risk flattens out
before approaching zero. However, if the risk were to go zero, we would only know that m is at
least as large as needed for perfect fitting, but could also be much larger.

In addition, even if we were able somehow to determine a value of m that fits the training data
well but not perfectly (whatever that means!), good prediction performance could still require a
larger value of m, that is, a larger neural network. This is because we do not know how large a
training set needs to be so as to represent the underlying data well. In other words, it could happen
that a given value of m allows for interpolation merely because the training set T is too small, and
the risk could be worse if T contained more data.

Because of these difficulties, instead of somehow tuning the value of m to the data precisely,
one addresses over- and under-fitting in deep learning by introducing a second data set V , called
the validation set, which is meant to represent “previously unseen data.” The weight vector w is
still fitted to the training set T , but in a way that the resulting predictor h(x; ŵ) does well on the
validation set, rather than on the training set, as described next.

Early Stopping by Validation After each training epoch (recall that an epoch of SGD is a
complete scan of all the data in the training set), the empirical risk LV (w) on the validation set V
is computed. This risk is typically greater than the empirical training risk LT (w) for all values of
w, because the SGD algorithm does not see the data in V , and therefore cannot adapt to it as it
does to the data in T .

In the early stages of training, the empirical validation risk LV (w) decreases as the network
improves its performance. After a while, however, the validation risk levels off and then typically

10

increases as SGD continues. This increase is a symptom of overfitting : While the predictor h(x; w)
does better and better on the training data, it eventually does so by adjusting to idiosyncrasies of
T (as in the motorcycle example above), but then fails to predict correct outputs for many of the
samples in V .

Training is then stopped when the validation risk reaches a minimum. The epoch in which this
occurs is detected post facto, because one has to see an increase before a minimum can be declared.
The weights wbest for the lowest validation risk encountered so far are therefore stored away during
training. Once LV (w) starts to increase, wbest is returned as the result of training.

Patience As a practical matter, detecting when LV (w) starts to increase is nontrivial: Since the
validation risk is just an estimate of the statistical risk and the validation set V has finite size, the
validation risk may fluctuate during training. It is then typical to set a so-called patience parameter,
which is a positive integer π. If none of the last π epochs have resulted in an update of wbest (that
is, no improvement on LV (w) has been observed over π epochs), then training is stopped and wbest

is returned.This technique has been studied empirically [1], but no clear guidelines have emerged
on an optimal patience parameter π.

Validation in Polynomial Fitting Overfitting can be measured also for polynomial fitting in
a similar way. In addition to the same blue dots as in Figure 4 (a), Figure 5 (a) also shows ten red
dots, which represent a validation set V . These red dots are generated with the same third degree
polynomial and noise distribution used for the blue dots (training set T): They are drawn from the
same generative data model p(x, y) from which the blue dots were drawn.

0 1
0

5

k = 1

k = 2

k = 3

k = 6

k = 9

0 2 4 6 8 10
0

0.5

1

1.5
training risk

validation risk

(a) (b)

Figure 5: (a) Polynomials of degrees between 1 and 9 fit the training data. Blue points are the
training set and red points are the validation set. Only some of the polynomials are shown, to
reduce figure clutter. The polynomial that generalizes best to the validation data has degree k = 3
and is shown as a thicker, green line. (b) Training and validation risk as a function of the degree
k of a polynomial fit to the blue dots in (a). The lowest validation risk is achieved for k = 3, while
the training risk keeps decreasing even beyond that.

11

However, the red dots are never used in training, and polynomials are still fit only to the blue
dots. The resulting polynomials in Figure 5 (a) are therefore identical to those in Figure 4 (a).
However, the red dots are now used to measure a validation risk, shown as a red plot as a function
of degree k in Figure 5 (b).

The polynomials for k = 1 or 2 do poorly on V , since the predictor is not sufficiently expressive.
The polynomial for k = 3 does best on V , and those for k between 4 and 8 do only moderately
worse. When k = 9, on the other hand, overfitting is glaringly obvious: The training risk is zero
and yet the validation risk skyrockets: The degree-9 polynomial has learned mostly the noise in
the data, rather than the underlying generative law.

Caveat While trends are similar for training a deep network and fitting polynomials, and so are
the reasons for them, the big difference between the two scenarios is the parameter being used to
modulate the extent of fitting. For polynomials it is the degree k. For deep networks, it is the
number of epochs used for training.

5.2 Dropout

Since deep nets have a large number of parameters, they would need impractically large training
sets to avoid overfitting if no measures are taken during training. Early termination by monitoring
the validation risk, as described above, is one such measure.

More generally, an excellent way to avoid overfitting in the presence of limited data would be to
build one network for every possible setting of the parameters, compute the posterior probability
of each setting given the training set, and then aggregate the nets into a single predictor that
computes the average output weighted by the posterior probabilities. This approach is obviously
infeasible to implement even for small nets.

One way to approximate this scheme in a computationally efficient way is called the dropout
method [3]. Given a deep network to be trained, a dropout network is obtained by flipping a biased
coin with P[heads] = p for each neuron of the original network and “dropping” that neuron if the
flip turns out tail. Dropping the neuron means that the output from that neuron is clamped to
zero, so that the neuron becomes effectively inactive.

One then trains the network by using mini-batches of training data, and performs one iteration
of training on each mini-batch after turning off neurons independently with probability 1−p. When
training is done, all the weights in the network are multiplied by p, and this somewhat resembles
averaging the outputs of the nets with weights that depend on how often a unit participated in
training. The value of p is typically set to 1/2.

Each dropout network can be viewed as a different network, and the dropout method somewhat
resembles sampling a large number of nets efficiently.

The theoretical justification of this method is dubious, but empirical studies show its effective-
ness in reducing overfitting.

6 Testing

Suppose that you train a deep network on a data set T and use a validation set V to determine
when to stop training. Once the optimal weight vector ŵ has been found, the following question

12

arises: How well can you expect your predictor to do on new data? That is, how well does the
predictor generalize?

One may be tempted to use the validation risk LV (ŵ) as a measure of generalization per-
formance, since this risk is computed on a data set V that has not been used for training the
predictor.

However, just as training “taints” the training data, so that validation must be performed on
a data set separate from the training set, validation “taints” the validation data. In other words,
validation, just like training, is an estimation procedure that finds an optimal number of training
epochs by evaluating the performance of the predictor on the validation set V after every epoch.
If V is too small or is biased, overfitting may occur during validation as well, and the number
of epochs chosen may be a consequence of the idiosyncrasies of V . Perhaps if we were to use a
different V we would obtain a different number of epochs.

The availability of a test set S, entirely disjoint from all other data sets used during training, is
indispensable. No research article in machine learning is ever accepted if there is even the suspicion
that any part of S has been used during training, either directly or indirectly.

In summary, the issues in validation are analogous to those encountered in training as far as
overfitting is concerned. Thus, we generally need the following three sets:

• A training set T to train the predictor.

• A validation set V to determine when to stop training.

• A test set S to evaluate the generalization performance of the predictor.

All these sets contain data point/value pairs (x, y), that is, they are all subsets of X × Y .

Termination by Cross-Validation If collecting a training set is difficult (and we saw that it
is), collecting three data sets is even harder, and may even be unrealistic in applications where each
sample is very costly. Even when expense is not an overriding issue, using a separate training set
T , validation set V , and testing set S means that we forgo using all the available data in T ∪V ∪S
for training, and we therefore make the predictor intentionally worse than it could be, in order to
hold out data for validation and testing.

Because of these considerations, some resampling techniques have been developed that allow
using a single data set for both training and model selection. The most popular of these techniques
is called cross-validation.

In a nutshell, before training starts the test set S is separated out from the rest of the data. Let
D be the remaining data. At the beginning of a new epoch e, the set D is scrambled as usual. If
cross-validation is used, D is split at random into a training set Te and a validation set Ve specific
to that epoch and in some fixed proportion (for instance, 3 to 1). Training is then stopped if the
sequence of validation risks LV0(w0), LV1(w1), . . . measured on Ve with the weights we obtained at
the end of epoch e shows signs of increase.

It was observed under the heading Patience above that it is difficult to detect this increase
reliably. With cross-validation these considerations still hold, and are exacerbated by the fact that
the validation risk is computed over a different set Ve for every epoch. The resulting randomness of
course worsens the fluctuations of the validation risk, and one may need a larger patience parameter
π for a reliable detection of overfitting.

13

References

[1] L. Prechelt. Early stopping—but when? In Neural networks: Tricks of the trade, pages 53–67. Springer,
2012. G. Montavon, G. B. Orr and K.-R. Müller, editors.

[2] S. Sonoda and N. Murata. Neural network with unbounded activations is universal approximator. Tech-
nical Report 1505.3654 [cs.NE], arXiv, 2015.

[3] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

14

	Classification and Regression
	The Training Set
	Data Annotation
	Deep Neural Networks
	The Generic Architecture of a Neural Network
	Converting a Regression Network to a Classifier

	Principles of Network Training
	Training
	Dropout

	Testing

