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The epipolar geometry of a pair of cameras expresses the fundamental relationship between
any two corresponding points in the two image planes, and leads to a key constraint between the
coordinates of these points that underlies visual reconstruction. The first Section below describes
the epipolar geometry. The Section thereafter expresses the key constraint algebraically. Finally,
Section 3 uses the epipolar geometry to develop an algorithm that reconstructs the relative positions
of the cameras and the three-dimensional position of points in the world from two images of at
least eight points.

1 The Epipolar Geometry of a Pair of Cameras

Figure 1 shows the main elements of the epipolar geometry for a pair of cameras.
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Figure 1: Essential elements of the epipolar geometry of a camera pair.

The world point P and the centers of projection of the two cameras identify a plane in space,
the epipolar plane of point P. The Figure shows a triangle of this plane, delimited by the two
projection rays and by the baseline of the camera pair, that is, the line segment that connects the
two centers of projection.1

1We use the term “baseline” for the line segment. However, this term is also often used for the length of this
segment, or even for the entire line through the two centers of projection.
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If the image planes are thought of extending indefinitely, the baseline intersects the two image
planes at two points called the epipoles of the two images. In particular, if the cameras are arranged
so that the baseline is parallel to either image plane, then the epipole in that image is a point at
infinity.

The epipoles are fixed points for a given camera pair configuration. With cameras somewhat
tilted towards each other, and with a sufficiently wide field of view, the epipoles would be inside
the image. Epipole eb in the image Ia taken by camera a would be literally the image of the center
of projection of camera b in Ia, and vice versa. Even if the two cameras do not physically see each
other, we maintain this description in an abstract sense: each epipole is the image of one camera
in the other image, even if this point is outside the field of view. Note that the epipole in image Ia
is called eb, because it is the image of camera b from camera a. Similar considerations hold for ea.

The epipolar plane intersects the two image planes along the two epipolar lines of point P,
each of which passes by construction through one of the two projection points pa and pb and one
of the two epipoles. Thus, epipolar lines come in corresponding pairs, and the correspondence is
established by the single epipolar plane for the given point P.

For a different world point P, the epipolar plane typically changes, and with it do the image
projections of P and the epipolar lines. However, all epipolar planes contain the baseline. Thus,
the set of epipolar planes forms a pencil of planes supported by the line through the baseline, and
the epipoles are fixed.

Suppose now that we are given the two images Ia and Ib taken by cameras a and b and a
point pa in Ia. If all we have is the images, we do not know where the corresponding point pb
is in the other image, nor where the world point P is, except that P must be somewhere along
the projection ray of pa. However, if in addition we know the relative position and orientation
of the two cameras, we know where the two centers of projection are relative to each other. The
two centers of projection and point pa identify the epipolar plane, and this in turn determines the
epipolar line of point pa in image Ib. The point pb must be somewhere on this line. If we were to
pick another point p′a on the epipolar line of P in image Ia, we would land on the same epipolar
line in image Ib. Thus corresponding points must be on corresponding epipolar lines. This fact is
called the epipolar constraint. It does not pin down pb if pa and the camera geometry are given,
but it does narrow down the possible positions for pb to a known line.

To understand what the epipolar constraint expresses, consider that the projection rays for two
arbitrary (as opposed to corresponding) points in the two images are generically two skew lines in
space. The projection rays of two corresponding points, on the the other hand, are coplanar with
each other and with the baseline, because they belong to the same epipolar plane. The epipolar
geometry captures this key constraint, and pairs of point that do not satisfy the constraint cannot
possibly correspond to each other.

2 The Essential Matrix

This section expresses the epipolar constraint described in the previous section algebraically.

Coordinate Systems. The canonical reference system for camera a is a right-handed Cartesian
coordinate system with its origin at the center of projection of a, its positive Z axis pointing towards
the scene along the optical axis of the camera, and its X axis pointing to the right2 along the rows

2When the camera is upside-up and viewed from behind it, as when looking through its viewfinder.
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of the camera sensor. As a consequence, the Y axis points downwards along the columns of the
sensor. The canonical reference system for camera b is defined similarly. Let

apa =

 axa
aya
f

 and bpb =

 bxb
byb
f


denote the coordinates, relative to each camera’s canonical reference system, of the image points
that are the projections of the same world point P. Please pay attention to this definition: apa is a
point on the image plane, but is here viewed as a point in three-dimensional space. Like all points
on the image plane of camera a, its third (Z) coordinate in the camera’s reference system is f , the
camera’s focal distance. Similar considerations hold for bpb. Also, since each point is observed in
its own camera, the reference system (left superscript) is that of the camera the point appears in
(right subscript).

Finally, let
bp = aRb(

ap− atb) (1)

be the rigid transformation between the two reference systems. As we know, the reverse transfor-
mation is

ap = bRa(
bp− bta) where bRa = aRTb and bta = −aRbatb . (2)

The Essential Matrix. When expressed in the reference system of camera a, the directions of
the projection rays through corresponding image points pa and pb are along the vectors

apa and bRa
bpb ,

and the baseline in this reference system is along the translation vector atb.
To simplify the notation in the manipulations that follows, we define

a = apa , b = bpb , R = aRb , t = atb , e = aeb

to be the image measurements of the two corresponding points (each viewed as a three-dimensional
point in its own camera’s reference system), the parameters of the coordinate transformation from
camera a to camera b, and the epipole of b in a. Then, the rotation and translation in the reverse
direction are

bRa = RT and bta = −Rt .

Coplanarity of the projection-ray directions a and RTb and baseline t can be expressed by
stating that their triple product is zero:

(RTb)T (t× a) = 0 that is, bTR (t× a) = 0 or bTR [t]×a = 0

where t = (tx, ty, tz)
T and

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0


is the skew-symmetric matrix that expresses the cross-product of t with any other vector.
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In summary, for corresponding points a and b the following equation holds:

bT E a = 0 (3)

where
E = R [t]× . (4)

Equation (3) is the algebraic form of the epipolar constraint and the matrix E is called the essential
matrix. Equation (3) expresses the coplanarity between any two points a and b on the same epipolar
plane for two fixed cameras.

If point b is fixed in image Ib, then the product

λT = bT E (5)

is a fixed row vector. If the fixed point a is replaced by a variable vector x in image Ia, then
equation (3) can be written as follows:

λTx = 0 . (6)

This is a single linear equation in the coordinates of x, and therefore represents a line in the image
plane of Ia. The point a satisfies this equation by equation (3). Also the translation vector t
satisfies equation (6), because

λT t = bT Et = bT R [t]× t = 0

(recall that the cross product of a vector with itself is zero). The epipole e in image Ia is on the
baseline, and therefore its coordinates in the reference frame of camera a are proportional to those
of t, so e satisfies equation (6) as well. Thus, this equation represents the line through a and e,
that is, the epipolar line of b in image Ia: If we knew the essential matrix E for a pair of cameras,
then we could find the equation of the epipolar line for every point b in Ib.

This state of affairs must of course hold the other way around as well, when the roles of the
two cameras are switched. Before seeing this in more detail, however, we explore the structure of
the essential matrix E.

The Structure of E. First, this matrix cannot be full rank, as the following geometric argument
proves: Since the epipole in image Ia belongs to all epipolar lines in Ia, not just one, the vector e
of its coordinates must satisfy equation (6) regardless of what point b is used in the definition (5)
of λ. This can happen only if e is in the null space of E, so this matrix must be degenerate.

The degeneracy of E can also be shown algebraically. More specifically, it is easy to see that
the rank of E is two for any nonzero t. To this end, note first that the matrix [t]× has rank two if
t is nonzero, because

[t]×t = t× t = 0

and the null space of [t]× is exactly the line through the origin and along t. Since R is full rank,
also the product E = R [t]× has rank 2 if t 6= 0. In addition, the null space of E and that of [t]×
are the same, because the solutions to the two systems

[t]×x = 0 and E x = 0

are the same, since R is full rank. Therefore, the rank of E is 2 if t is nonzero, and the null space
of E is the line spanned by t (or equivalently e).
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There is more to the structure of E. For any vector v orthogonal to t, the definition of cross
product yields

‖[t]×v‖ = ‖t‖ ‖v‖ .

The vector v is orthogonal to t if it is in the row space of [t]×, and the equation above then shows
that the matrix [t]× maps all unit vectors (‖v‖ = 1) in its row space into vectors of magnitude
‖t‖. From the definition of SVD, this means that the two nonzero singular values of [t]× are equal
to each other.3 Since multiplication by an orthogonal matrix (R) does not change the matrix’s
singular values, we conclude that the essential matrix E has two nonzero singular values equal to
each other, and one zero singular value. The right singular vector v3 corresponding to the zero
singular value of E is a unit vector along the epipole and the translation vector,

v3 ∼ e ∼ t . (7)

In these expressions, the symbol ‘∼’ means “proportional to,” or “equal up to a multiplicative
constant.” Since the two nonzero singular values of E are equal to each other, the corresponding
right singular vectors v1 and v2 are arbitrary, as long as they form an orthonormal triple with v3.

Scale and Epipoles at Infinity. Since the systems involving the essential matrix E are all
homogeneous, the translation vector t and the epipole e can only be found up to a scale factor. This
limitation is consistent with the fact that cameras fundamentally measure angles between projection
rays, and cannot measure lengths. For instance, if two images show a building, it is not possible to
determine from image measurements alone whether the pictures are of a real building taken from
two cameras, say, three meters apart, or they are images of a miniature building perhaps a hundred
times smaller, taken from two cameras that are three centimeters apart. Scale is irretrievably lost
in imaging, even if multiple cameras are used and as long as only the images are available. Of
course, if we knew, say, the length of the baseline, or the height of the building, then we could
determine the scale factor.

While this loss of scale is generally a disadvantage of passive imaging with cameras at unknown
positions, it has a positive consequence on the representation of epipoles and translation when the
baseline is parallel to the image plane of either camera.

To understand this observation, consider a situation in which the angle θ = θ0 between the
optical axis of camera a and the baseline is less than 90 degrees, as illustrated in Figure 2. The
orientation of camera b does not matter for this argument. Then, the baseline crosses the image
plane of camera a at the epipole e of b in image Ia, and the translation vector from a to b is
proportional to e:

e =

 ex0
ey0
1

 and t = c e

where c is some constant.
Now gradually increase the angle θ beyond θ0 by rotating the baseline away from the optical

axis. For simplicity, think of this rotation occurring in the plane that contains the optical axis and
e(θ0), so that the epipole e(θ) moves along the line ` between the principal point π0 of a and e(θ0).

3Since equation (3) is homogeneous, if E is an essential matrix then so is αE for any nonzero α. Therefore, the
common magnitude of the two nonzero singular values is arbitrary.
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Figure 2: When the angle θ between the optical axis of camera a and the baseline approaches π
2 ,

the baseline (that is, the line through a and along the translation vector t(θ)) becomes more and
more parallel to the image plane of camera a, and the epipole e(θ) tends to the point at infinity of
the line ` through the principal point π0 and e(θ0).

Since the epipole is always in the image plane, its third coordinate is 1, and we have

e(θ) =

 ex(θ)
ey(θ)

1

 =

 h(θ)ex0
h(θ)ey0

1


where h(θ) is an increasing function of θ. When θ tends to π/2, the baseline becomes parallel to
the image plane of camera a. The scalar h(θ) tends to infinity, and the epipole moves infinitely far
away from π0.

However, since the third right singular vector v3(θ) of the essential matrix has unit norm, it
represents the epipole e(θ)—and the translation t(θ)—only up to a constant. More specifically,

v3(θ) =
e(θ)

‖e(θ)‖
=

1√
1 + h2(θ) (e2x0 + e2y0)

 h(θ)ex0
h(θ)ey0

1


and we immediately see that

lim
θ→π/2

v3(θ) =
1√

e2x0 + e2y0

 ex0
ey0
0

 ,

a unit-norm vector as expected.
Thus, a singular vector v3 that has a third component equal to zero can be viewed as pointing

to an epipole e that is the point at infinity on the line `. Since t is proportional to v3 as well, we
see that t(π2 ) is also parallel to the image plane, consistently with the fact that for θ = π

2 camera b
is to the side of camera a, that is, in the plane z = 0 in the reference system of camera a.
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In summary, the solution e or t provided by v3 is correct even when the baseline is parallel to
the image plane, as long as the epipole e is then interpreted as a point at infinity on the image
plane of camera a.

Switching Cameras. Suppose now that we fix a in image Ia but replace b by a varying vector
in Ib. Then we can repeat all the considerations above for the left null space and the left row space
of E. In particular, the product Ea for fixed a is a column vector, and equation (3) becomes the
equation of the epipolar line in image Ib. The third left singular vector u3 of E is the direction
of the epipole ea in Ib in the reference frame of camera b. Rather than showing this through a
separate argument, we prove that ET is the essential matrix that would be obtained if the roles of
cameras a and b were reversed.

To this end, Table 1 shows the results both ways using full subscripts, to make sure we do not
confuse the two reference systems. To justify these results in the reverse direction, we then need
to show that

aETb = bEa ,

that is, that transposing one essential matrix yields the essential matrix in the opposite direction.
This result is a straightforward consequence of the invariance of the cross product to rotation,

(Rx)× (Ry) = R (x× y)

which can be restated as follows for cross-product matrices, thinking of x as fixed and y as variable:

[Rx]×R = R [x]× . (8)

Because [atb]× is skew-symmetric,

aETb = (aRb [atb]×)T = −[atb]×
aRTb .

From our discussion of rigid transformations, we also know that if

bp = aRb(
ap− atb)

then
ap = bRa(

bp− bta) where aRb = bRTa and atb = −bRabta .

Therefore,
aETb = [bRa

bta]×
bRa

and from equation (8)
aETb = bRa [bta]× = bEa

as promised.

Use of the Epipolar Constraint. The epipolar constraint (3) is repeated here for convenience,
using full notation for the essential matrix:

bT aEb a = 0
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where a and b are corresponding points. This constraint is used in two different contexts. In stereo
vision, aRb and atb and therefore aEb are known. Given a point a in Ia, the epipolar constraint then
allows restricting the search for a corresponding point b to the epipolar line of a.

In visual reconstruction, on the other hand, several pairs (ai,bi) of corresponding points are
given, and aEb is unknown. Equation (3) for each pair of points yields a linear equation in the
entries of aEb. From this, aEb and then aRb and atb can be found, as we will see in Section 3.

3 The Eight-Point Algorithm

This Section describes a method for computing estimates of the rigid transformation aTb = (aRb,
atb)

between two cameras a and b and estimates of the coordinates aP1, . . . ,
aPn of a set of n points

in the reference system of one of the two cameras from the n pairs (apa,1,
bpb,1), . . . (

apa,n,
bpb,n)

of noisy measurements of their corresponding images. The transformation aTb is called camera
motion, and the point coordinates aP1, . . . ,

aPn are collectively called the scene structure. The
image points apa,i and bpb,i are regarded as 3D points with their third coordinate equal to 1, the
standard focal distance. This means that rather than measuring all distances in, say, meters or
millimeters, they are all measured in units of focal distance.

The classic method described below is called the eight-point algorithm and is was invented by
Hugh Christopher Longuet-Higgins in 1981 [3]. Its main goal is to find aTb. Triangulation, that is,
the calculation of structure from the image points and aTb, is outlined in Appendix B.

To simplify notation in the manipulations that follow, we again let

a = apa , b = bpb , A = aP , B = bP , R = aRb , t = atb ,

adding a subscript to a, b, or A when necessary to distinguish different points.
Since cameras fundamentally measure angles, both structure and motion can be estimated only

up to a common nonzero multiplicative scale factor. The resulting degree of freedom is eliminated
by assuming that

‖t‖ = 1 focal distance . (9)

The method described below is often called the eight-point algorithm, because it requires a minimum
of n = 8 pairs of corresponding image points. More than 8 point pairs are typically used for better
noise rejection.

The epipolar constraint described in Section 2,

bTE a = 0 ,

can be spelled out as follows:

e11a1b1 + e12a2b1 + e13a3b1 + e21a1b2 + e22a2b2 + e23a3b2 + e31a1b3 + e32a2b3 + e33a3b3 = 0

where a =
[
a1 a2 a3

]T
, b =

[
b1 b2 b3

]T
, and

E =

 e11 e12 e13
e21 e22 e23
e31 e32 e33

 .
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For two cameras a and b with nonzero baseline, let

bp = aRb (ap− atb)

be the coordinate transformation between points ap in a and points bp in b, and let

ap = bRa (bp− bta) with aRb = bRTa and atb = −bRa bta

be the transformation in the reverse direction.
The essential matrix of the camera pair (a, b) is the matrix

aEb = aRb [atb]× where [t]× =

 0 −t3 t2
t3 0 −t1
−t2 t1 0


and the essential matrix of the camera pair (b, a) is

bEa = aETb .

The epipole aeb is the image of the center of projection of camera b in image Ia and the
epipole bea is the image of the center of projection of camera a in image Ib. They satisfy

aEb
aeb = bEa

bea = 0 and also aEb
atb = bEa

bta = 0 .

A point apa in image Ia and its corresponding point bpb in image Ib, both written as 3D
vectors in their camera’s canonical reference system, satisfy the epipolar constraint

bpTb
aEb

apa = 0 .

This equation can also be written as follows:

λTb
apa = λTa

bpb = 0

where
λb = bEa

bpb and λa = aEb
apa

are the vectors of coefficients of the epipolar line of pb in image Ia and that of pa in image
Ib respectively.
Up to a nonzero and otherwise arbitrary multiplicative constant, the singular value decom-
position of aEb is

aEb ∼ UΣV T =
[

u1 u2 u3

]
diag(1, 1, 0)

[
v1 v2 v3

]T
where

v3 ∼ aeb ∼ atb and u3 ∼ bea ∼ bta

and u1, u2, v1, v2 are any vectors for which U and V become orthogonal.

Table 1: Definition and properties of the essential matrix.
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For easier programmatic manipulation, this expression can in turn be packaged in the following
form:

cTη = 0 where c = b⊗ a =

 b1 a
b2 a
b3 a

 (10)

is the Kronecker product4 of b and a, and

η =
[
e11 e12 e13 e21 e22 e23 e31 e32 e33

]T
is the stack of entries in E read by rows. Equation (10) can be replicated n times, one per image
point pair,

cTmη = 0 for m = 1, . . . , n ,

to yield a linear system

Cη = 0 where C =
[

c1 · · · cn
]T

is an n× 9 matrix. The homogeneous nature of this system reflects the fact that translation t and
therefore the essential matrix E are defined up to a nonzero multiplicative scale factor. As we know
from a previous note, to prevent the trivial solution η = 0 and at the same time solve the system
above in the least-squares sense to account for measurement inaccuracies, one computes

η = arg min
‖η‖=1

‖Cη‖ = v9 where C = UCΣCV
T
C

is the Singular Value Decomposition (SVD) of C and v9 is the last column of VC . The resulting
vector η is then reshaped into an estimate E of the essential matrix.5

As we know, the null space of E is the one-dimensional space spanned by t, which also spans
the null space of the skew matrix [t]×. So an estimate of t is

t1,2 = ±v3

where v3 is the last column of V in the SVD E = UΣV T of E. The ambiguity in the sign of t will
be resolved later.

Given t, one can construct the skew matrix [t]×, and then estimate R by solving the following
Procrustes problem [1]:

E ≈ R [t]× . (11)

where the approximation is in the Frobenius norm. That is,

R = arg min
R
‖E −R [t]×‖F =

√∑
i,j

d2ij where D = [dij ] = E −R [t]× .

4More generally, the Kronecker product of two matrices F and G where F is m× n is defined as follows:

F ⊗G =

 f11G . . . f1nG
...

...
fm1G . . . fmnG

 .

5As we found out in Section 2, the two nonzero singular values of the essential matrix are equal to each other, and
the matrix Ẽ that satisfies this constraint and is closest to E in the Frobenius norm is Ẽ = Udiag([1, 1, 0])V T where
E = UΣV T is the SVD of E. However, the singular values of Ẽ are not needed in the computation that follows, so
this correction is unnecessary.
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Appendix A shows6 that if E and [t]× were full rank, the solution to problem (11) would be

R = Qdet(Q) where Q = UFV
T
F and F = UFΣFV

T
F

is the SVD of the 3× 3 matrix
F = E [t]T× ,

and where the multiplication by det(Q) ensures that the resulting orthogonal matrix is a rotation.
This multiplication is allowed, because t, and therefore E, is defined up to a multiplicative nonzero
constant. In particular, if E is an essential matrix then so is −E.

However, the two matrices E and [t]× have rank 2. Since their third singular value is therefore
zero, the third singular vectors (both left and right) of these two matrices are defined up to a sign.
Recall that the third right singular vector is the direction of the translation t from camera a to
camera b in the reference frame of a. Similarly, the third left singular vector is the direction of the
translation s = −RT t from camera b to camera a in the reference frame of b. Because of this sign
ambiguity in the solution, the Procrustes problem has two solutions:

R1,2 = Q1,2 det(Q1,2) where Q1,2 = α1β
T
1 + α2β

T
2 ±α3β

T
3

where
UF =

[
α1 α2 α3

]
, VF =

[
β1 β2 β3

]
.

Combining the twofold ambiguity in t with that in R yields four solutions, each corresponding to
a different essential matrix:

(t, R1) , (−t, R2) , (t, R2) , (−t, R1) .

Appendix C shows that only one of these solutions places all reconstructed world points in
front of both cameras. The correct solution can then be identified by computing structure for all
four cases by triangulation, and choosing the one solution that enforces structure to be in front of
both cameras. Allowing for reconstruction errors, a safer approach is to chose the solution with a
majority of points in front of the camera. Appendices B and C show the details of this calculation
and a separate HTML file shows Python code for 3D reconstruction with two cameras. This HTML
file has links to the code and data used in two simple test of the algorithm.
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Appendices

A Solving the Procrustes Problem

This proof is adapted from a classical text on matrix computations [1], and applies to any two
matrices A and B of size p× n that encode two sets of n data points in p dimensions.

Theorem A.1. Let corresponding columns of the two matrices A,B ∈ Rp×n encode n pairs of
corresponding points in Rp with p ≤ n. The following algorithm finds an orthogonal matrix Q ∈
Rp×p that minimizes the Frobenius norm of ‖A−QB‖F .

C = ABT

[U,Σ, V ] = svd(C)

Q = UV T

Proof. The trace tr(C) of a matrix C is the sum of its diagonal entries, and from the definition
of Frobenius norm of a matrix C,

‖C‖2F =
∑
i,j

c2ij = tr(CCT ) .

Then,

‖A−QB‖2F = tr[(A−QB)(A−QB)T ] = tr(AAT ) + tr(BBT )− 2 tr(ABTQT )

where we used the fact that Q is orthogonal and that the trace of the sum of several matrices is
the sum of their traces.

The first two terms in the right-hand side of the equation above do not depend on Q, so
minimizing ‖A−QB‖2F is the same as maximizing tr(ABTQT ). If

ABT = UΣV T

is the SVD of ABT , then we want to find the maximum of

tr(UΣV TQT ) = tr(UΣV TQTUUT ) = tr(UΣZUT ) where Z = V TQTU

is an orthogonal matrix. It is easy to verify that if matrix G has the same size as matrix F T then

tr(FG) = tr(GF ) ,

so that

tr(UΣZUT ) = tr(ΣZUTU) = tr(ΣZ) =

p∑
i=1

σizii .

Since Z is the product of orthogonal matrices, it is itself orthogonal. The rows of orthogonal
matrices have unit norm, so no entry in an orthogonal matrix can have magnitude greater than 1.
So the sum in the last term above is maximized when

z11 = . . . = zpp = 1 ,
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which occurs when Z is the p× p identity matrix Ip. So one solution is achieved when

Z = Ip that is, V TQTU = Ip or QT = V UT .

The last equation was obtained by multiplying the previous one by V on the left and by UT on the
right. Thus,

Q = UV T

as promised.
If the matrix C is full rank (so that both A and B are full rank), then this is the only solution.

Otherwise, this is just a solution, because some of the σi are zero, so the corresponding values zii
do not matter. The case in which rank(C) = p − 1 is both simple and relevant to the eight-point
algorithm. In that case, the null space of C has dimension 1, so the only ambiguity in U and V
that pertains to the last singular value is the sign of its last singular vectors up and vp. Changing
the sign of both vectors leaves the product UV T unaltered, because

UV T =
[

u1 . . . up
] [

v1 . . . vp
]T

=

p∑
i=1

uiv
T
i .

So if UV T is one solution, then the other one is[
u1 . . . −up

] [
v1 . . . vp

]T
which is the same as [

u1 . . . up
] [

v1 . . . −vp
]T

.

∆

B Approximate Triangulation

Triangulation is the process of computing the coordinates A of each point in space from its projec-
tions in the two images, given that the transformation (R, t) between the two cameras is known.
This Appendix shows a simple triangulation method obtained by solving the two projection equa-
tions for A. In this derivation, the two image projections are represented by vectors a2 and b2,
which are the coordinates of the two projections of A in the canonical image reference system. If
the focal distances of the two cameras are fa and fb, then a2 and b2 relate to the coordinates a
and b (which are measured in the canonical camera reference system) by

a = fa

[
a2

1

]
and b = fb

[
b2

1

]
.

There are four scalar projection equations (one for each point coordinate in the two images) in
three unknowns (the coordinates of A), so the resulting linear system in A is over-constrained. In
this Appendix, this system is solved in the sense of least squares, by minimizing the norm of the
discrepancy between the left-hand side and the right-hand side of this system. The least-squares
solution is optimal when this discrepancy, called the algebraic error, is Gaussian and isotropic.
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However, this is typically not the case: What is likely Gaussian and sometimes isotropic is the
image reprojection error, that is, the norm of the difference between the measured image point
coordinates a2 and b2 and the coordinates obtained by projecting the solution A onto the two
images.

Because of this, the solution to triangulation given here is not optimal. However, the solu-
tion found by using Longuet-Higgins’s algorithm is typically used to initialize bundle adjustment,
a computation that refines both motion (R, t) and structure (A1, . . . ,An) to minimize the image
reprojection error—a nonlinear function of the unknowns. As a consequence, the approximate tri-
angulation method described here is typically adequate, both as an initializer for bundle adjustment
and to resolve the sign ambiguity discussed in Appendix C.

The projection equations for each point A can be written as follows for the two cameras:

a2 =
1

Z

[
X
Y

]
and b2 =

1

kT (A− t)
R2(A− t) where R2 =

[
iT

jT

]
and where iT , jT , kT are the rows of the rotation matrix R. The vector A = (X,Y, Z)T collects
the unknown coordinates of the point in space. Multiplying each equation by the denominator in
its right-hand side and rearranging terms yield the following over-constrained 4×3 system of linear
equations in A:  I −a2

b2 kT −R2

A =

 0

(b2k
T −R2)t


where I is the 2 × 2 identity matrix and 0 is a column vector with two zeros. The solution A to
this system can be found by the Least Squares method, and B can be computed by transforming
A to the reference system of camera b :

B = R (A− t) .

This procedure is to be repeated for each of the image-point pairs.

C Resolving the Sign Ambiguity

Because of the sign ambiguity in s and t, the Procrustes problem has two solutions:

R1,2 = W1,2 det(W1,2) where W1,2 = α1β
T
1 + α2β

T
2 ± stT

where
UB =

[
α1 α2 −s

]
, VB =

[
β1 β2 t

]
.

Equivalently, if UB and VB are first replaced by their rotation versions UB det(UB) and VB det(VB)
(so that their determinants are equal to 1), we have

R1 = α1β
T
1 + α2β

T
2 − stT and R2 = −α1β

T
1 −α2β

T
2 − stT . (12)

These equations reveal that R1 and R2 relate to each other through a 180-degree rotation of either
camera reference system around the baseline. To see this, write the transformation between these
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two frames of reference as a transformation from frame 1 to the world frame composed with one
from world frame to frame 2:

R2R
T
1 = (−α1β

T
1 −α2β

T
2 − stT )(β1α

T
1 + β2α

T
2 − stT ) = −α1α

T
1 −α2α

T
2 + s(s)T ,

and this rotation maps α1 to −α1, α2 to −α2, and s (or t) to itself, as promised.
The transformation between the first and the last of the four solutions above places camera 2 on

the opposite side of camera 1 along the baseline.7 This transformation can equivalently described
as leaving the cameras where they are, pointing in the same way, but replacing all structure vectors
Ai and Bi by their opposites −Ai and −Bi. This transformation is said to change the chirality of
structure in the literature [2], because superposing the original structure with the transformed one
requires a change of handedness of the reference system (that is, a mirror flip). This transformation
has the effect of placing the scene behind the two cameras if it is in front of them to begin with.
With some abuse of terminology, a change of chirality in computer vision means merely changing
whether structure is in front or behind a camera. In this sense, structure has two values of chirality,
one per camera. A 180-degree rotation around the baseline—obtained by replacing R1 with R2 or
vice versa—changes chirality once more, but only for the camera being rotated.

The four motion solutions given earlier correspond to using top right, top left, bottom right,
and bottom left camera pairs in Figure 3, in this order. The two top pairs in the figure are said to
form a twisted pair, and so are the two bottom pairs.

Only one of these solutions puts the scene points in front of both cameras. So the correct
solution can be identified by computing structure for all four cases by triangulation, as shown in
Appendix B, and choosing the one solution that enforces most of the structure solution (allowing
for a few reconstruction errors) to be in front of both cameras:

eT3 Ai > 0 and eT3 Bi > 0 for i = 1, . . . , n where eT3 =
[

0 0 1
]
.

7Of course, the same transformation can be described as a displacement of camera 1 relative to camera 2.
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Figure 3: The fourfold ambiguity of reconstruction corresponds to the two ways to pick the sign
of t (left or right diagrams) and the two ways to choose the rotation matrix R (top or bottom
diagrams). A circle with a cross (a dot) denotes a Y axis pointing into (out of) the page. Only the
arrangement in the top right has the scene structure (represented by the single point P and its two
projection rays) in front of both cameras.
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