Local, Unconstrained Function
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Motivation and Scope
¢ Most estimation problems are solved by optimization
e Machine learning:
e Parametric predictor: h(x ; v) : R x R — Y
¢ Training set T = {(x1,y1) ., (Xn, ¥n)} and loss = U(yn, y)
* Risk: Lr(v )_NZn 1 (}/n, ( V) R =R
e Training: VvV =arg min, _rm Lr(v )
e 3D Reconstruction:
® Computer Graphics: I = n(C, S) where [ are (multiple)
images, C are the camera positions and orientations, S is
scene shape
e Computer Vision: Given /, find
C, S =argmings ||/ — n(C, )]
¢ In general, “solving” the system of equations E(z) = 0 can
be viewed as
Z =argming ||E(2)||
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. VetvatonandScope
Only Local Minimization

Z = arg minge, f(2)

All we know about f is a “black box” (think Python function)
For many problems, f has many local minima

Start somewhere (z;), and take steps “down”

f(Zkt1) < f(2k)

When we get stuck at a local minimum, we declare success
We would like global minima, but all we get is local ones
For some problems, f has a unique minimum...

... or at least a single connected set of minima
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.~ FistOderMethods
Gradient

ot
821

Vi) =5=| :
of

0Zm

e We worked with gradients for the case z € R? (images)
e Now z € R™ with m possibly very large

e If Vf(z) exists everywhere, the condition Vf(z) =0

is necessary and sufficient for a stationary point
(max, min, or saddle)

e Warning: only necessary for a minimum!
¢ Reduces to first derivative when f : R - R
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First Order Taylor Expansion
f(z) ~ 91(2) = f(20) + [V/(20)]"(z - 20)
approximates f(z) near z, with a (hyper)plane through z,

)

Vf(zy) points to direction of steepest increase of f at z,
e If we want to find z; where f(z1) < f(zy), going along
—Vf(zp) seems promising
¢ This is the general idea of gradient descent
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N e ool
A Template

e Gradient descent methods fit the following template:

k=0

while z, is not a minimum
compute the gradient gx = Vf(zx)
compute a “learning rate” a, > 0
Zy1 = Zkx — akGk
k=k+1

end
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N e ool
Design Decisions

k=0 ¢ In what direction to
while z, is not a minimum proceed (—gx«)
compute the gradient g e How long a step to take
compute a learning rate o, > 0 in that direction (ax||g«||)
i"f k::q — Gk e When to stop (“while z
ond - is not a minimum?”)

Different decisions lead
to different methods
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-~ GradentDescent
Gradient Descent

In what direction to proceed: —gx = —V£(z)
“Gradient descent”

Problem reduces to one dimension:

h(a) = f(zk — agk)

e a=0&2z=2

Find o = ax > 0 such that

f(Zk — Ozkgk) < f(Zk)

How to find ay?
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Step Size
e Simplest idea: ax = « (fixed learning rate)

* Small « leads to slow progress
® Large o can miss minima

R
B

e Scheduling «:

e Start with « relatively large (say o = 1073)
® Decrease o over time
® Determine decrease rate of a by trial and error
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.~ stepSizeSelection Methods
Momentum

e Sometimes z, meanders around in shallow valleys

f(zx) versus k
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* «is too small, direction is still promising

e Add momentum
vo=0
Vi1 = Vx — aViE(zk) 0<puxk<1)
Zyi1 = Zk + Vi
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~ stpsSizeSelectionMethods
Line Search

¢ Find a local minimum in the search direction px = —0g«
h(«) = f(zx + apk), @ one-dimensional problem

® Bracketing triple:

e a<b<c, h(a)>h(b), h(b)< h(c)

e Contains a (local) minimum!

e Split the bigger of [a, b] and [b, c] in half with a point u

¢ Find a new, narrower bracketing triple involving u and two
outof a,b,c

¢ Stop when the bracket is narrow enough (say, 10~°)

¢ Pinned down a minimum to within 10~°
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v ool
Phase 1: Find a Bracketing Triple
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.~ stesieSectontetiods |
Phase 2: Shrink the Bracketing Triple

hia) }
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fb—a>c—b>b
u=(a+b)/2
if h(u) > h(b)
(a,b,c) =(u,b,c)
otherwise
(a,b,c) = (a,u,b)
end
otherwise
u=(b+c)/2
if h(u) > h(b)
(a,b,c) = (a,b,u)
otherwise
(a,b,c) = (b,u,c)
end
end
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. Tormination
Termination

Are we still making “significant progress”?

Check f(zx_1) — f(zx)? (We want this to be strictly positive)
Check ||zx_1 — 2«|| 7 (We want this to be large enough)
Second is more stringent close the the minimum

because Vf(z) ~ 0

Stop when ||z — 2| < ¢
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I e e
Is Gradient Descent a Good Strategy?

e “We are going in the direction of fastest descent”
“We choose an optimal step size by line search”
“Must be good, no?” Not so fast!

An example for which we know the answer:
fz)=c+a’z+1z'Qz

Q = 0 (convex paraboloid)

All smooth functions look like this close enough to z*
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Skating to a Minimum

|

e Many 90-degree turns slow down convergence

e There are methods that take fewer iterations, but each
iteration takes more time and space

e We will stick to gradient descent

e See appendices in the notes for more efficient methods for
problems in low-dimensional spaces
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Stochastic Gradient Descent

¢ A special case of gradient descent, SGD works for
averages of many terms (N very large):

= 5 0@

e Computing V£(zx) is too expensive
e Partition B = {1,..., N} into J random mini-batches B;
each of about equal size

f(z) ~ £(2) |B|Z¢n = Vi(z) = Vf(2).

neB;

¢ Mini-batch gradients are correct on average



~ stochasticGradient Descent
SGD and Mini-Batch Size

e SGD iteration: zx.1 = zZx — aVfi(2k)
e Mini-batch gradients are correct on average
e One cycle through all the mini-batches is an epoch

¢ Repeatedly cycle through all the data
(Scramble data before each epoch)

e Asymptotic convergence can be proven with suitable
step-size schedule

e Small batches = low storage but high gradient variance

e Make batches as big as will fit in memory for minimal
variance

¢ |n deep learning, memory is GPU memory
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