Basics of Machine Learning

COMPSCI 527 — Computer Vision

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

- 1 Classification and Regression
- 2 Why Neural Networks?
- 3 Neurons, Layers, and Networks
- 4 Loss and Risk
- **5** Generalization, Overfitting, and Underfitting
- 6 Regularization

・ 同 ト ・ ヨ ト ・ ヨ ト

A First Classification Problem

• MNIST handwritten digit recognition (60,000 images, labeled, curated)

- 28×28 pixel black-and-white images of individual digits
- What is the *label* y ∈ Y = {0, 1, ..., 9} for a given input image x?

< ロ > < 同 > < 回 > < 回 > < 回 > <

Supervised Machine Learning

- Supervised machine learning is the problem of learning a function ŷ = h(x) : X ⊆ ℝ^d → Y ⊆ ℝ from sample input/output pairs (x, y)
- "Supervised" means that the samples are provided
- Depending on the problem, *h* may map an image, an image window, or a set of images x to
 - A yes or no answer to the question "Is this a [person, car, cat]":
 Y = {yes, no} for object detection
 - A category out of a small set: $Y = \{0, 1, \dots, 9\}$ for digit recognition
 - A category out of a large set: *Y* = {person, car, ..., tree} for object recognition
 - A number or small vector of numbers: $Y = \mathbb{R}^5$ for camera motion
 - A whole field (array) of numbers: Y = ℝ^{2×1000×1000} for image motion estimation

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Classification and Regression

- Two types of supervised machine learning problems:
- *Classification*: *Y* is *categorical*, *i.e.*, finite and unstructured (For digit recognition, digit-value differences are irrelevant) *y* is then called a *label*
- Examples: Object detection, object recognition, foreground/background segregation
- *Regression*: $Y = \mathbb{R}^e$; *y* is then called a *value* or *response*
- Distances in Y may be important for learning
- Examples: Camera motion estimation, depth from stereo, image motion estimation, object tracking
- A *target* is either a label or a value

-

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Data Annotation

- The biggest cost in machine learning is data annotation
- Manually associate labels to images
- Even harder for regression, where targets are real-valued
- Different annotators may produce different annotations
- May need multiple annotators and take majority votes
- The Amazon Mechanical Turk provides an open market for annotations
- Many companies provide annotation frameworks or services

・ 同 ト ・ ヨ ト ・ ヨ ト

Why Neural Networks?

- A neural network is a *parametric function*, $\hat{y} = h(\mathbf{x}; \mathbf{w})$
- Parameters in $\mathbf{w} \in \mathbb{R}^m$ are called *weights*
- Neural networks are very *expressive* (large *m*)
- Can approximate any well-behaved function from a hypercube X in R^d to a hypercube Y in R^e within any e > 0
- Universal approximators
- However, complexity of approximation grows exponentially with d = dim(X)
- Because *m* is large, neural networks are *data hungry*: They require large data sets for training

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Why Do Neural Networks Work?

- Theory shows that availability of lots of training data is not a sufficient explanation
- There must be deeper reasons
- Special structure of image space (or audio space)?
- Specialized network architectures?
- Regularization tricks and techniques?
- We don't really know. Stay tuned...
- Be prepared for some hand-waving and empirical statements

A Generic Deep Neural Network Architecture

- One basic computational unit, the *neuron*
- Many neurons that receive the same input form a layer
- A cascade of layers is a *network*
- A *deep* network has many layers
- Aside on convolutional layers:
 - Layers with a special structure are called convolutional
 - · We will examine convolutional layers in a later lecture
 - Even convolutional layers fit the generic architecture described next

・ 同 ト ・ ヨ ト ・ ヨ

The Neuron

- $y = \rho(a(\mathbf{x}))$ where $a = \mathbf{v}^T \mathbf{x} + b$ $\mathbf{x} \in \mathbb{R}^d, \ y \in \mathbb{R}$
- **v** are the *gains*, *b* is the *bias*
- Together, $\mathbf{w} = [\mathbf{v}, b]^T$ are the *weights*
- ρ(a) = max(0, a) (ReLU, Rectified Linear Unit)

Layers and Networks

• A layer is a set of neurons that share the same input

- A neural network is a cascade of layers: $\mathbf{y} = \rho(V\mathbf{x} + \mathbf{b})$
- A neural network is *deep* if it has many layers
- Two layers can (theoretically) make a universal approximator
- If neurons did not have nonlinearities, any cascade of layers would collapse to a single layer

Using a Regression Network to Classify

- For *regression*, the output $\hat{y} = h(\mathbf{x})$ of the network is directly the desired quantity (scalar or vector)
- For classification, the codomain is discrete (and actually finite)
- A neural-network *classifier* is designed to have *K* real-valued scalar outputs if there are *K* labels
- Let $\mathbf{z} = (z_1, \dots, z_K) = \mathbf{f}(\mathbf{x})$ be the output from the network
- Then, the classification output is $\hat{y} = h(\mathbf{x}) = \arg \max_k z_k = \arg \max_k f_k(\mathbf{x})$
- Pick the class corresponding to the highest output

э.

< ロ > < 同 > < 回 > < 回 > < - > <

Loss

- To know if the learned function *h* does well on sample (**x**, *y*), we need to measure how far the value ŷ it predicts for **x** is from the true value y
- The *loss* is a measure of the discrepancy between y and $\hat{y} = h(\mathbf{x})$
- The *loss* function maps pairs (y, ŷ) to real values:
 ℓ : Y × Y → ℝ
- Simplest loss for classification: the *zero-one loss* or *misclassification loss*

$$\ell(y, \hat{y}) = l(y \neq \hat{y}) = \begin{cases} 1 & \text{if } y \neq \hat{y} \\ 0 & \text{if } y = \hat{y} \end{cases}$$

- Simplest loss for regression: The *quadratic loss*: $\ell(y, \hat{y}) = (y \hat{y})^2$
- Different problems call for different measures of loss

Empirical Risk

- Given a *training set* $T = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}$ with $\mathbf{x}_n \in X$ and $y_n \in Y$, and loss function ℓ , and a neural net architecture $h(\mathbf{x}; \mathbf{w})$ with $\mathbf{w} \in \mathbb{R}^m$, the *empirical risk* or *training error* is the average loss on T: $L_T(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^N \ell(y_n, h(\mathbf{x}_n; \mathbf{w}))$
- This is what we minimize in a data fitting problem:

$$\hat{\mathbf{w}} \in rgmin_{\mathbf{w} \in \mathbb{R}^m} L_{\mathcal{T}}(\mathbf{w})$$

• This is called Empirical Risk Minimization (ERM)

・ 同 ト ・ ヨ ト ・ ヨ ト

Machine Learning and the Statistical Risk

- ERM: $\hat{\mathbf{w}} \in \operatorname{arg\,min}_{\mathbf{w} \in \mathbb{R}^m} L_T(\mathbf{w})$
- In machine learning, we go much farther: We also want *h* to do well on previously unseen inputs
- To relate past and future data, assume that all data comes from the same joint probability distribution p(x, y)
- *p* is called the *generative data model* or just *model*
- The goal of machine learning is to estimate the statistical risk L_p(w) = E_p[ℓ(y, h(x; w))]
- p is a good conceptual link between different data sets
- However, p is unknown and cannot be estimated
- Proxy for L_p(w): An empirical risk L_V(w) estimated on a separate validation set

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

SGD, Overfitting, and Underfitting

- $L_T(\mathbf{w})$ is an *average* loss over a *large* training set \Rightarrow SGD!
- Estimate gradient $\nabla L_T(\mathbf{w})$ by $\nabla L_{B_i}(\mathbf{w})$ over mini-batches B_j
- The training risk $L_T(\mathbf{w})$ decreases on average as the network learns
- If we keep going, $L_T(\mathbf{w})$ decreases too much, often to zero
- Network overfits: It learns idiosyncrasies of the data

A Separate Validation Set

• Fit to ("train on") T (blue dots) but evaluate on V (red dots)

- Evaluate on V after each epoch
- Stop training just before the risk on V starts increasing

A 10

Underfitting, Overfitting, and Generalization

- Doing well *on previously unseen data* (*V* as opposed to *T*) is the difference between data fitting and machine learning
- Train by reducing the training risk $L_T(\mathbf{w})$ by SGD
- Stop training just before the validation risk $L_V(\mathbf{w})$ starts increasing
- A predictor with high training risk $L_T(\mathbf{w})$ underfits
- A predictor with low training risk L_T(w) and high validation risk L_V(w) overfits
- A measure of overfitting is $L_V(\mathbf{w}) L_T(\mathbf{w})$
- A predictor that neither underfits nor overfits generalizes well
- A predictor can both underfit (high L_T(w)) and overfit (L_V(w) > L_T(w) and increasing L_V(w))

Testing

- A machine learning system has been trained, using both T and V, to yield weights ŵ for the network h(x; ŵ)
- We cannot report $L_V(\hat{\mathbf{w}})$ as the measure of performance
- The set *V* is tainted since we used it during training, even if not *for* training
- Performance measures are accepted only on pristine sets, not used in any way for training
- We need to *test* the system on a third set S, the *test set*
- Estimate the statistical risk $L_p(\hat{\mathbf{w}}) = \mathbb{E}_p[\ell(y, h(\mathbf{x}; \hat{\mathbf{w}}))]$ by computing the empirical risk $L_S(\hat{\mathbf{w}}) = \frac{1}{|S|} \sum_{n=1}^{|S|} \ell(y_n, h(\mathbf{x}_n; \hat{\mathbf{w}}))$ on S

-

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Summary of Sets Involved

- A training set T to train the predictor
- A validation set V to determine when to stop training
- A *test set S* to evaluate the performance of the resulting predictor
- Resampling techniques ("cross-validation") exist for making the same set play the role of both *T* and *V*
- S must still be entirely separate

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regularization

- To reduce overfitting, most training methods use some type of regularization
- Regularization can be seen as *inductive bias*:
 Bias the training algorithm to find weights in a subset of R^m, rather than in all of it
- Early termination by monitoring the validation risk L_V(w) is regularization, because it does not allow the weights to move arbitrarily far from w₀
- Another method is *weight decay*: add a term λ ||w||² to the risk function: Keeps the weights small (Tikhonov)

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Data Augmentation

- Data augmentation is not a regularization method, but combats overfitting all the same
- Make new training data out of thin air
- Given data sample (x, y), create perturbed copies x₁,..., x_k of x (these have the same label y)
- Add samples $(\mathbf{x}_1, \mathbf{y}), \dots, (\mathbf{x}_k, \mathbf{y})$ to training set T
- With images this is easy. The **x**_is are cropped, rotated, stretched, re-colored, ... versions of **x**
- One training sample generates *k* new ones
- T grows by a factor of k + 1
- · Very effective, used almost universally
- Need to use realistic perturbations

<ロ> <回> <回> <回> < 回> < 回> < 回</p>