Back-Propagation and Networks for **Recognition**

COMPSCI 527 — Computer Vision

Ξ

イロト イ母 トイヨ トイヨト

Outline

- **1** [The Soft-Max Function](#page-2-0)
- **2** [Loss and Risk](#page-3-0)
- **³** [Back-Propagation](#page-7-0)
- **4** [Convolutional Neural Networks](#page-12-0)
- **⁵** [AlexNet](#page-19-0)
- **6** [The State of the Art of Image Classification](#page-23-0)

重

 \sqrt{m}) \sqrt{m}) \sqrt{m})

The Soft-Max Function

- A neural network for a *K*-class classifier outputs vector $z = h(x)$ of *K* real numbers called *logits*, and then $\hat{y} = \arg \max_k z_k$
- During training, the output **z** is mapped to a vector **p** of *scores*, which makes formulating a good loss function easier

Soft-max function:
$$
p_k(\mathbf{p}) = \frac{e^{z_k}}{\sum_{j=1}^{K} e^{z_j}}
$$

- $p_k(z) > 0$ and $\sum_{k=1}^{K} p_k(z) = 1$ for all z
- If $z_i \gg z_j$ for $j \neq i$ then $\sum_{j=1}^K e^{z_j} \approx e^{z_j}$
- So $p_i \approx 1$ and $p_i \approx 0$ for $j \neq i$: "Brings out the biggest:" *soft-max*
- arg max_{*k*} $p_k = \arg \max_k z_k$ because the soft-max is monotonic
- So the soft-max can be removed after training

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

The 0-1 Loss is Useless for Training

- Example: $K = 5$ classes, scores $p = h(x_n; w)$ as in figure
- True label $y_n = 2$, predicted label $\hat{y}_n = 0$ because

 $p_0 > p_{v_n} = p_2$. Therefore, the 0-1 loss is 1

• Changing **w** by an inifinitesimal amount may *reduce* but not close the gap between p_0 and p_2 : loss stays 1

• That is,
$$
\nabla \ell_n(\mathbf{w}) = \frac{\partial \ell_{0\text{-}1}}{\partial \mathbf{w}} = 0
$$

• Gradient provides no information towards reducing the gap! (Can still use 0-1 loss for *validation* or *evaluation*)

 \equiv

イロト イ押 トイラ トイラト

The Cross-Entropy Loss

- We compute the loss on the score vector **p**, not on the prediction \hat{v}_n
- Use *cross-entropy loss* on the score **p** as a proxy loss

 $\ell(y, \mathbf{p}) = -\log p_y$

- Unbounded loss for total misclassification
- Differentiable, nonzero derivative everywhere
- Meshes well with the soft-max (the layer that produces **p**)

Example, Continued

- Last layer before soft-max has activations **z** ∈ R *K*
- Soft-max has output $\mathbf{p} = \sigma(\mathbf{z})$ with $p_k = \frac{e^{z_k}}{\sum_{j=0}^4 e^{z_j}} \in \mathbb{R}^5$
- $p_k > 0$ for all *k* and $\sum_{k=0}^{4} p_k = 1$
- Ideally, if the correct class is $y = 2$, we would like output **p** to equal $\mathbf{q} = [0, 0, 1, 0, 0]$, the *one-hot encoding* of *y*
- That is, $q_v = q_2 = 1$ and all other q_i are zero
- $\ell(y, \mathbf{p}) = -\log p_y = -\log p_2$
- When **p** approaches **q** we have $p_y \rightarrow 1$ and $\ell(y, \mathbf{p}) \rightarrow 0$
- When **p** is far from **q** we have $p_y \to 0$ and $\ell(y, \mathbf{p}) \to \infty$

イロト イ母 トイラ トイラ トーラ

Example, Continued

• *Cross-entropy loss meshes well with soft-max*

- `(*y*, **p**) = − log *p^y* = − log *^e zy* $\frac{e^{z_y}}{\sum_{j=0}^4 e^{z_j}} = \log(\sum_{j=0}^4 e^{z_j}) - z_y$
- When $z_y \gg z_{y'}$ for all $y' \neq y$ we have $\log(\sum_{j=0}^4\bm{e}^{\mathsf{z}_j})\approx\log\bm{e}^{\mathsf{z}_\mathsf{y}}=z_\mathsf{y}$ so that $\ell(\mathsf{y},\mathsf{p})\to~0$
- When $z_y \ll z_{y'}$ for some $y' \neq y$ we have $\log(\sum_{j=0}^4 e^{z_j}) \approx c$ (*c* effectively independent of *z^y*) so that $\ell(y, \mathbf{p}) \to c - z_y \to \infty$ linearly as $z_y \to -\infty$ (Actual plot depends on all values in **z**)
- This is a "soft hinge loss" in **z** (not in **p**[\)](#page-5-0)

Computing the Gradient of a Loss Term

- Empirical risk: $L_{\tau}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell(y_n, h(\mathbf{x}_n; \mathbf{w}))$
- Training summary:
	- Compute $\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^m} L_T(\mathbf{w})$ by moving along −∇*L^T* (**w**), estimated as minibatch risks ∇*LB^j* (**w**)
	- Use *V* to decide when to stop training (early termination)
- Regardless of what you average on, you need to compute loss gradients $\nabla \ell_n(\mathbf{w}) = \nabla \ell(\mathbf{y}_n, h(\mathbf{x}_n; \mathbf{w}))$ and then average them (gradient of average $=$ average of gradients)
- Gradients computed by *back-propagation*, which is just the chain rule for differentiation
- The neural network $+$ loss function is the chain

 \equiv

イロト イ押 トイラ トイラト

Back-Propagation

$$
\nabla \ell_n(\mathbf{w}) = \frac{\partial \ell_n}{\partial \mathbf{w}} = \left(\frac{\partial \ell_n}{\partial \mathbf{w}_1}, \dots, \frac{\partial \ell_n}{\partial \mathbf{w}_J}\right)^T
$$
 for a network with *J* layers

- Computations from \mathbf{x}_n to ℓ_n form a chain: use the chain rule!
- Derivatives of ℓ_n w.r.t. layer *j* or before go through $\mathbf{x}^{(j)}$

$$
\frac{\partial \ell_n}{\partial \mathbf{w}^{(j)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(j)}} \frac{\partial \mathbf{x}^{(j)}}{\partial \mathbf{w}^{(j)}}
$$
\n
$$
\frac{\partial \ell_n}{\partial \mathbf{x}^{(j-1)}} = \frac{\partial \ell_n}{\partial \mathbf{x}^{(j)}} \frac{\partial \mathbf{x}^{(j)}}{\partial \mathbf{x}^{(j-1)}}
$$
 (recursion!)\n• Start:
$$
\frac{\partial \ell_n}{\partial \mathbf{x}^{(j)}} = \frac{\partial \ell}{\partial \mathbf{p}}
$$

- Local computations at layer *j*: ∂**x** (*j*) [∂]**w**(*j*) and [∂]**^x** (*j*) ∂**x** (*j*−1)
- Partial derivatives of $h^{(j)}$ with respect to layer weights and input to the layer
- Local Jacobian matrices, can compute by knowing what the layer does
- The start of the process can be computed from knowing the loss function, $\frac{\partial \ell_{n}}{\partial \mathbf{x}^{(J)}} = \frac{\partial \ell}{\partial \mathbf{p}}$ ∂**p**
- Another local Jacobian
- The rest is going recursively from output to input, one layer at a time, accumulating ∂`*ⁿ* ∂**w**(*j*) into a ve[cto](#page-8-0)[r](#page-10-0) ∂`*ⁿ* [∂](#page-8-0)**[w](#page-9-0)**

Back-Propagation Spelled Out for *J* = 3

$$
\frac{\partial \ell_n}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial \ell_n}{\partial \mathbf{w}^{(1)}} \\ \frac{\partial \ell_n}{\partial \mathbf{w}^{(2)}} \\ \frac{\partial \ell_n}{\partial \mathbf{w}^{(3)}} \end{bmatrix}
$$

4 00 10

(Jacobians in blue are local)

 \overline{AB} \rightarrow \overline{AB} \rightarrow \overline{AB}

E

A Google Deep Dream Image

- Train a network to recognize animals (yields **w**)
- Set \mathbf{x}_0 = random noise image, $\mathbf{y} =$ dog
- Minimize $\ell(y, h(x))$ with respect to **x** rather than minimizing $L_T(\mathbf{w})$ with respect to **w** . **.** Ω

Convolutional Layers

- A fully connected layer with input **x** ∈ R *d* and output **y** ∈ R *e* has *e* neurons, each with *d* gains and one bias
- Total of $(d + 1)e$ weights to be trained in a single layer
- For images, *d*, *e* are in the order of hundreds of thousands or even millions
- Too many parameters
- *Convolutional layers* are layers restricted in a special way
- Many fewer parameters to train
- Also some justification in terms of heuristic principles (see notes)

重

イロト イ押 トイラト イラトー

A Convolutional Layer

- Convolution + bias: $\mathbf{a} = \mathbf{x} * \mathbf{v} + b$
- Example: 3 \times 4 input image **x**, 2 \times 2 kernel **v** = $\begin{bmatrix} v_{00} & v_{01} \ v_{10} & v_{11} \end{bmatrix}$

["Same" style convolution]

• Do you want to see this as one convolution with **v** (plus bias) or as 12 neurons with the same weights?

A + + = + + =

"Local" Neurons

- Neurons are now "local"
- Just means that many coefficients are zero:

- If a neuron is viewed as being connected to all input pixels, then the 12 neurons share their *nonzero* weights
- So a convolutional layer is the same as a fully-connected layer where each neuron has many weights clamped to zero, and the remaining weights are *shared* across neurons

A + + = + + =

There is Still a Gain Matrix

• Neuron number 6 (starting at 0):

 $a_{12} = v_{11}x_{12} + v_{10}x_{13} + v_{01}x_{22} + v_{00}x_{23} + b$

• Activation number six $a_{12} = V[6, 1]$ **x** where

$$
\mathbf{x} = (x_{00}, x_{01}, x_{02}, x_{03}, x_{10}, x_{11}, x_{12}, x_{13}, x_{20}, x_{21}, x_{22}, x_{23})^T \nV[6, :] = (0, 0, 0, 0, 0, 0, x_{11}, x_{10}, 0, 0, x_{01}, x_{00})
$$

画

イロメ イ母メ イヨメ イヨメー

Gain Matrix for a Convolutional Layer

$$
\mathbf{a} = \mathbf{x} \ast \mathbf{v} + b \quad \text{or} \quad \mathbf{a}_{\text{flat}} = V \mathbf{x}_{\text{flat}} + b
$$

- A "regular" layer with many zeros and shared weights [Boundary neurons have fewer nonzero weights]
- Zeros cannot be changed during training
- One scalar bias instead of 12

イロメ イタメ イラメ イラメー

Stride

- Activation a_{ij} is often similar to $a_{i,j+1}$ and $a_{i+1,j}$
- Images often vary slowly over space
- Activations are redundant
- Reduce the redundancy by computing convolutions with a *stride s^m* greater than one
- Only compute every *s^m* output values in dimension *m*
- Output size shrinks from $d_1 \times d_2$ to about $d_1/s_1 \times d_2/s_2$
- Typically $s_m = s$ (same stride in all dimensions)
- Layers get smaller and smaller because of stride
- Multiscale image analysis, efficiency

G.

イロト イ押 トイラ トイラト

Max Pooling

- Another way to reduce output resolution is *max pooling*
- This is a layer of its own, separate from convolution
- Consider *k* × *k* windows with stride *s*
- Often $s = k$ (adjacent, non-overlapping windows)
- For each window, output the maximum value
- Output is about $d_1/s \times d_2/s$
- Returns highest response in window, rather than the response in a fixed position
- More expensive than strided convolution because the entire convolution needs to be computed before the max is found in each window
- No longer very popular

重

イロト イ押 トイラ トイラト

The Input Layer of AlexNet

- AlexNet *circa* 2012, classifies color images into one of 1000 categories
- Trained on ImageNet, a large database with millions of labeled images

A more Compact Drawing

÷.

AlexNet

224x224x3

重

メロメメ 倒す メモメメモメー

AlexNet Numbers

- Input is $224 \times 224 \times 3$ (color image)
- First layer outputs 96 feature maps of size 55×55
- A fully-connected first layer would have about $224 \times 224 \times 3 \times 55 \times 55 \times 96 \approx 4.4 \times 10^{10}$ gains
- With convolutional kernels of size 11×11 , there are only $96 \times (11^2 + 1) = 11,712$ weights
- That's a big deal! Locality and reuse
- Most of the complexity is in the last few, fully-connected layers, which still have millions of parameters
- More recent neural networks have much lighter final layers, but many more layers
- There are also *fully convolutional* neural networks

重

 \sqrt{m}) \sqrt{m}) \sqrt{m})

The State of the Art of Image Classification

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
- Based on ImageNet, 1.4 million images, 1000 categories (Fei-Fei Li, Stanford)
- Three different competitions:
	- *Classification*:
		- One label per image, 1.2M images available for training, 50k for validation, 100k withheld for testing
		- Zero-one loss for evaluation, 5 guesses allowed
	- *Localization*: Classification, plus bounding box on one instance

Correct if \geq 50% intersection/union overlap with true box

• *Detection*: Same as localization, but find every instance in the image. Measure the fraction of mistakes (false positives, false negatives) イロト イ母 トイラ トイラト Ξ Ω

Single-object localization

Object detection

[Image from Russakovsky *et al.*, ImageNet Large Scale Visual Recognition Challenge, *Int'l. J. Comp. Vision* 115:211-252, 2015]

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Difficulties of ILSVRC

- Images are "natural." Arbitrary backgrounds, different sizes, viewpoints, lighting. Partially visible objects
- 1,000 categories, subtle distinctions. Example: Siberian husky and Eskimo dog
- Variations of appearance within one category can be significant (how many lamps can you think of?)
- What is the label of one image? For instance, a picture of a group of people examining a fishing rod was labeled as "reel."

重

イロト イ押 トイラト イラトー

Errors on Image Classification

- Answer included in top 5:
	- 2010: 28.2 percent error rate
	- 2017: 2.3 percent (ensemble of several deep networks)
- 2021: Now we do *single top answer*, ≈ 10 percent error rate
- 2021 SotA has 2.4 billion weights (CoAtNet, Dai *et al.*, Google Brain). Attention mechanisms are gaining interest
	- Attention: Inputs to a layer are weighted by a learnable *attention mask* that emphasizes relevant parts of the image
	- Just add the mask, then SGD will tune it to do the right thing
- Improvement results from both architectural insights (residuals, attention, positional encoding, ...) and persistent engineering
- A book on "tricks of the trade in deep learning!"
- Problem solved? Only on ImageNet!
- "Meta-overfitting"

Ξ

イロト イ押 トイラト イラト

Attention

- The right network is the usual network (or part of it)
- The left network is similar but outputs a single channel with values in (0, 1)
- The product multiplies each (scalar) pixel in the attention map with each (vector) pixel in the activation map
- The rest is the same: Train the whole system by SGD

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

画