
Back-Propagation and Networks for
Recognition

COMPSCI 527 — Computer Vision

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 1 / 28

Outline

1 The Soft-Max Function

2 Loss and Risk

3 Back-Propagation

4 Convolutional Neural Networks

5 AlexNet

6 The State of the Art of Image Classification

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 2 / 28

The Soft-Max Function

The Soft-Max Function
• A neural network for a K -class classifier outputs vector z = h(x)

of K real numbers called logits, and then ŷ = argmaxk zk

• During training, the output z is mapped to a vector p of scores,
which makes formulating a good loss function easier

Soft-max function: pk (p) =
ezk∑K
j=1 ezj

• pk (z) > 0 and
∑K

k=1 pk (z) = 1 for all z
• If zi � zj for j 6= i then

∑K
j=1 ezj ≈ ezi

• So pi ≈ 1 and pj ≈ 0 for j 6= i : “Brings out the biggest:” soft-max
• argmaxk pk = argmaxk zk because the soft-max is monotonic
• So the soft-max can be removed after training

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 3 / 28

Loss and Risk

The 0-1 Loss is Useless for Training
• Example: K = 5 classes, scores p = h(xn;w) as in figure
• True label yn = 2, predicted label ŷn = 0 because

p0 > pyn = p2. Therefore, the 0-1 loss is 1

0 1 2 3 4k

p
2

p
0

• Changing w by an inifinitesimal amount may reduce but not
close the gap between p0 and p2: loss stays 1
• That is, ∇`n(w) = ∂`0-1

∂w = 0
• Gradient provides no information towards reducing the gap!

(Can still use 0-1 loss for validation or evaluation)

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 4 / 28

Loss and Risk

The Cross-Entropy Loss

• We compute the loss on the score
vector p, not on the prediction ŷn

• Use cross-entropy loss on the
score p as a proxy loss
`(y ,p) = − log py

• Unbounded loss for total
misclassification
• Differentiable, nonzero derivative

everywhere
• Meshes well with the soft-max

(the layer that produces p)
0 1

0

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 5 / 28

Loss and Risk

Example, Continued

• Last layer before soft-max has activations z ∈ RK

• Soft-max has output p = σ(z) with pk = ezk∑4
j=0 ezj ∈ R5

• pk > 0 for all k and
∑4

k=0 pk = 1
• Ideally, if the correct class is y = 2, we would like output p

to equal q = [0,0,1,0,0], the one-hot encoding of y
• That is, qy = q2 = 1 and all other qj are zero
• `(y ,p) = − log py = − log p2

• When p approaches q we have py → 1 and `(y ,p)→ 0
• When p is far from q we have py → 0 and `(y ,p)→∞

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 6 / 28

Loss and Risk

Example, Continued
• Cross-entropy loss meshes well with soft-max

-10 10

0

15

• `(y ,p) = − log py = − log ezy∑4
j=0 ezj = log(

∑4
j=0 ezj)− zy

• When zy � zy ′ for all y ′ 6= y we have
log(

∑4
j=0 ezj) ≈ log ezy = zy so that `(y ,p)→ 0

• When zy � zy ′ for some y ′ 6= y we have log(
∑4

j=0 ezj) ≈ c
(c effectively independent of zy) so that
`(y ,p)→ c − zy →∞ linearly as zy → −∞ (Actual plot
depends on all values in z)
• This is a “soft hinge loss” in z (not in p)

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 7 / 28

Back-Propagation

Computing the Gradient of a Loss Term

• Empirical risk: LT (w) = 1
N

∑N
n=1 `(yn,h(xn;w))

• Training summary:
• Compute ŵ = argminw∈Rm LT (w) by moving along
−∇LT (w), estimated as minibatch risks ∇LBj (w)

• Use V to decide when to stop training (early termination)
• Regardless of what you average on, you need to compute

loss gradients ∇`n(w) = ∇`(yn,h(xn;w)) and then average
them (gradient of average = average of gradients)
• Gradients computed by back-propagation, which is just the

chain rule for differentiation
• The neural network + loss function is the chain

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 8 / 28

Back-Propagation

Back-Propagation

∇`n(w) = ∂`n
∂w =

(
∂`n
∂w1

, . . . , ∂`n
∂wJ

)T
for a network with J layers

(1)h h(2) h(3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

• Computations from xn to `n form a chain: use the chain rule!
• Derivatives of `n w.r.t. layer j or before go through x(j)

∂`n
∂w(j) =

∂`n
∂x(j)

∂x(j)

∂w(j)

∂`n
∂x(j−1) =

∂`n
∂x(j)

∂x(j)

∂x(j−1) (recursion!)
• Start: ∂`n

∂x(J) =
∂`
∂p

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 9 / 28

Back-Propagation

Local Jacobians
(1)h h(2) h(3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

• Local computations at layer j : ∂x(j)

∂w(j) and ∂x(j)

∂x(j−1)

• Partial derivatives of h(j) with respect to layer weights and
input to the layer
• Local Jacobian matrices, can compute by knowing what the

layer does
• The start of the process can be computed from knowing the

loss function, ∂`n
∂x(J) =

∂`
∂p

• Another local Jacobian
• The rest is going recursively from output to input, one layer

at a time, accumulating ∂`n
∂w(j) into a vector ∂`n

∂w

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 10 / 28

Back-Propagation

Back-Propagation Spelled Out for J = 3
(1)h h(2) h(3)

w(1) w(2) w(3)

(1)x (2)x (3)x = p(0)xn x= l n

ny

l

∂`n
∂x(3) =

∂`
∂p

∂`n
∂w(3) =

∂`n
∂x(3)

∂x(3)

∂w(3)

∂`n
∂x(2) =

∂`n
∂x(3)

∂x(3)

∂x(2)

∂`n
∂w(2) =

∂`n
∂x(2)

∂x(2)

∂w(2)

∂`n
∂x(1) =

∂`n
∂x(2)

∂x(2)

∂x(1)

∂`n
∂w(1) =

∂`n
∂x(1)

∂x(1)

∂w(1)(
∂`n
∂x(0) =

∂`n
∂x(1)

∂x(1)

∂x(0)

)

∂`n
∂w =

∂`n
∂w(1)

∂`n
∂w(2)

∂`n
∂w(3)

(Jacobians in blue are local)

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 11 / 28

Back-Propagation

A Google Deep Dream Image

• Train a network to recognize animals (yields w)
• Set x0 = random noise image, y = dog
• Minimize `(y ,h(x)) with respect to x rather than minimizing

LT (w) with respect to w
COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 12 / 28

Convolutional Neural Networks

Convolutional Layers

• A fully connected layer with input x ∈ Rd and output y ∈ Re

has e neurons, each with d gains and one bias
• Total of (d + 1)e weights to be trained in a single layer
• For images, d ,e are in the order of hundreds of thousands

or even millions
• Too many parameters
• Convolutional layers are layers restricted in a special way
• Many fewer parameters to train
• Also some justification in terms of heuristic principles (see

notes)

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 13 / 28

Convolutional Neural Networks

A Convolutional Layer
• Convolution + bias: a = x ∗ v + b

• Example: 3× 4 input image x, 2× 2 kernel v =

[
v00 v01

v10 v11

]
[“Same” style convolution]

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

v10v11
v00v01

• Do you want to see this as one convolution with v (plus bias)
or as 12 neurons with the same weights?

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 14 / 28

Convolutional Neural Networks

“Local” Neurons

• Neurons are now “local”
• Just means that many coefficients are zero:

v01v00
v11v10

0

0
00

0

0

0 0

• If a neuron is viewed as being connected to all input pixels,
then the 12 neurons share their nonzero weights
• So a convolutional layer is the same as a fully-connected

layer where each neuron has many weights clamped to
zero, and the remaining weights are shared across neurons

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 15 / 28

Convolutional Neural Networks

There is Still a Gain Matrix

a

0 1 2 3

0
1
2

a12

x
0 0 0 0

0

0
0
0

0 1 2 3 4

0
1
2
3

v10v11
v00v01

v01v00
v11v10

v
• Neuron number 6 (starting at 0):

a12 = v11x12 + v10x13 + v01x22 + v00x23 + b
• Activation number six a12 = V [6, :] x where

x = (x00, x01, x02, x03, x10, x11, x12, x13, x20, x21, x22, x23)
T

V [6, :] = (0, 0, 0, 0, 0, 0, v11, v10, 0, 0, v01, v00)

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 16 / 28

Convolutional Neural Networks

Gain Matrix for a Convolutional Layer

a = x ∗ v + b or aflat = Vxflat + b

a00
a01
a02
a03
a10
a11
a12
a13
a20
a21
a22
a23

=

v11 v10 0 0 v01 v00 0 0 0 0 0 0
0 v11 v10 0 0 v01 v00 0 0 0 0 0
0 0 v11 v10 0 0 v01 v00 0 0 0 0
0 0 0 v11 v10 0 0 v01 v00 0 0 0
0 0 0 0 v11 v10 0 0 v01 v00 0 0
0 0 0 0 0 v11 v10 0 0 v01 v00 0
0 0 0 0 0 0 v11 v10 0 0 v01 v00
0 0 0 0 0 0 0 v11 v10 0 0 v01
0 0 0 0 0 0 0 0 v11 v10 0 0
0 0 0 0 0 0 0 0 0 v11 v10 0
0 0 0 0 0 0 0 0 0 0 v11 v10
0 0 0 0 0 0 0 0 0 0 0 v11

x00
x01
x02
x03
x10
x11
x12
x13
x20
x21
x22
x23

+ b

• A “regular” layer with many zeros and shared weights
[Boundary neurons have fewer nonzero weights]
• Zeros cannot be changed during training
• One scalar bias instead of 12

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 17 / 28

Convolutional Neural Networks

Stride

• Activation aij is often similar to ai,j+1 and ai+1,j

• Images often vary slowly over space
• Activations are redundant
• Reduce the redundancy by computing convolutions with a

stride sm greater than one
• Only compute every sm output values in dimension m
• Output size shrinks from d1 × d2 to about d1/s1 × d2/s2

• Typically sm = s (same stride in all dimensions)
• Layers get smaller and smaller because of stride
• Multiscale image analysis, efficiency

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 18 / 28

Convolutional Neural Networks

Max Pooling
• Another way to reduce output resolution is max pooling
• This is a layer of its own, separate from convolution
• Consider k × k windows with stride s
• Often s = k (adjacent, non-overlapping windows)
• For each window, output the maximum value
• Output is about d1/s × d2/s
• Returns highest response in window, rather than the

response in a fixed position
• More expensive than strided convolution because the entire

convolution needs to be computed before the max is found
in each window
• No longer very popular

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 19 / 28

AlexNet

The Input Layer of AlexNet
• AlexNet circa 2012, classifies color images into one of 1000

categories
• Trained on ImageNet, a large database with millions of

labeled images

input x (3 channels)

response maps ρ(a)
convolution

kernels

feature maps a

receptive field
of convolution

max pooling

output
y = π(ρ(a))

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 20 / 28

AlexNet

A more Compact Drawing

input x (3 channels)

response maps ρ(a)
convolution

kernels

feature maps a

receptive field
of convolution

max pooling

output
y = π(ρ(a))

224

224

11

11

55
55

96
2
2

max-pooling

27 27

96

3

3

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 21 / 28

AlexNet

AlexNet

27x27x96 13x13x192 13x13x192 13x13x128

5x5

5x5 3x3

3x3

3x3

3x3

3x3

3x3

2048x1 2048x1 1000x1

224x224x3

11x11

dense dense dense

dense dense dense

55x55x96

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 22 / 28

AlexNet

AlexNet Numbers
• Input is 224× 224× 3 (color image)
• First layer outputs 96 feature maps of size 55× 55
• A fully-connected first layer would have about

224× 224× 3× 55× 55× 96 ≈ 4.4× 1010 gains
• With convolutional kernels of size 11× 11, there are only

96× (112 + 1) = 11,712 weights
• That’s a big deal! Locality and reuse
• Most of the complexity is in the last few, fully-connected

layers, which still have millions of parameters
• More recent neural networks have much lighter final layers,

but many more layers
• There are also fully convolutional neural networks

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 23 / 28

The State of the Art of Image Classification

The State of the Art of Image Classification
• ImageNet Large Scale Visual Recognition Challenge

(ILSVRC)
• Based on ImageNet,1.4 million images, 1000 categories

(Fei-Fei Li, Stanford)
• Three different competitions:

• Classification:
• One label per image, 1.2M images available for training, 50k

for validation, 100k withheld for testing
• Zero-one loss for evaluation, 5 guesses allowed

• Localization: Classification, plus bounding box on one
instance
Correct if ≥ 50% intersection/union overlap with true box

• Detection: Same as localization, but find every instance in
the image. Measure the fraction of mistakes (false positives,
false negatives)

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 24 / 28

The State of the Art of Image Classification

[Image from Russakovsky et al., ImageNet Large Scale Visual Recognition Challenge, Int’l. J. Comp. Vision 115:211-252, 2015]

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 25 / 28

The State of the Art of Image Classification

Difficulties of ILSVRC

• Images are “natural.” Arbitrary backgrounds, different sizes,
viewpoints, lighting. Partially visible objects
• 1,000 categories, subtle distinctions. Example: Siberian

husky and Eskimo dog
• Variations of appearance within one category can be

significant (how many lamps can you think of?)
• What is the label of one image? For instance, a picture of a

group of people examining a fishing rod was labeled as
“reel.”

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 26 / 28

The State of the Art of Image Classification

Errors on Image Classification
• Answer included in top 5:

• 2010: 28.2 percent error rate
• 2017: 2.3 percent (ensemble of several deep networks)

• 2021: Now we do single top answer, ≈ 10 percent error rate
• 2021 SotA has 2.4 billion weights (CoAtNet, Dai et al.,

Google Brain). Attention mechanisms are gaining interest
• Attention: Inputs to a layer are weighted by a learnable

attention mask that emphasizes relevant parts of the image
• Just add the mask, then SGD will tune it to do the right thing

• Improvement results from both architectural insights
(residuals, attention, positional encoding, ...) and persistent
engineering
• A book on “tricks of the trade in deep learning!”
• Problem solved? Only on ImageNet!
• “Meta-overfitting”

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 27 / 28

The State of the Art of Image Classification

Attention

neural
network

sigmoid

neural
network

x

attention
map

• The right network is the
usual network (or part of it)
• The left network is similar but

outputs a single channel with
values in (0,1)
• The product multiplies each

(scalar) pixel in the attention
map with each (vector) pixel
in the activation map
• The rest is the same: Train

the whole system by SGD

COMPSCI 527 — Computer Vision Back-Propagation and Networks for Recognition 28 / 28

	The Soft-Max Function
	Loss and Risk
	Back-Propagation
	Convolutional Neural Networks
	AlexNet
	The State of the Art of Image Classification

