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Linear Transformations

The Four Fundamental Spaces of a Matrix
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A =

 √3
√

3 0
−3 3 0
1 1 0

null(A) = span([0,0,1]T )

row space(A) = span(first two rows)

range(A) = span(first two columns)

left null(A) = span(cross product of first two columns)

(comes out to be span([−1,0,
√

3]T ))
range(A)↔ row space(A)
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The Solutions of a Linear System

The Solutions of a Linear System
Ax = b

where A is m × n, rank r
• Key point:

b 6∈ range(A) ⇒ no solutions
b ∈ range(A) ⇒ ∞n−r solutions

(An affine space of solutions)
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The Solutions of a Linear System

Compatibility

• Incompatible: 2 0
0 1
0 0

[ x1

x2

]
=

 0
0

b3

 (b3 6= 0)

• Compatible:  2 0
0 1
0 0

[ x1

x2

]
=

 b1

b2

0



COMPSCI 527 — Computer Vision Linear Systems 5 / 19



The Solutions of a Linear System

Under-Determined System
 2 4

1 2
3 6

[ x1

x2

]
=

 2
1
3


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The Solutions of a Linear System

Redundant and Invertible Systems
• Redundant:  2 1

1 0
3 0

[ x1

x2

]
=

 4
1
3


• Invertible: [

2 1
3 0

] [
x1

x2

]
=

[
4
3

]
• Inverse:

A−1 =
1
3

[
0 1
3 −2

]
x = A−1b = 1

3

[
0 1
3 −2

] [
4
3

]
(This is not how linear systems are typically solved)
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The Solutions of a Linear System

Summary

yes no

yes no

yes no

underdetermined

redundantinvertible

b in range(A)

r = n

m = n

incompatible

• This is not operational!
• Orthogonal matrices→ SVD→ rank, bases for the four

spaces
• SVD gives us much more
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Orthogonal Matrices

Orthogonal Matrices

• A matrix V = [v1, . . . ,vn] is orthogonal if its columns are
orthonormal
• Orthonormal: vT

i vj = δij (orthogonal and unit norm)
• Orthogonal matrices have left-inverse V T

• Square orthogonal matrices have left- and right-inverse V T

• Orthogonal matrices do not change the norm of vectors:
‖Vx‖2 = xT V T Vx = xT x = ‖x‖2
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The Singular Value Decomposition

The Singular Value Decomposition: Geometry

b = Ax where A =
1
√

2

 √3
√

3 0
−3 3 0
1 1 0



COMPSCI 527 — Computer Vision Linear Systems 10 / 19



The Singular Value Decomposition

The Singular Value Decomposition: Algebra
Av1 = σ1u1

Av2 = σ2u2

Av3 = σ3u3

σ1 ≥ σ2 > σ3 = 0

uT
1 u1 = 1

uT
2 u2 = 1

uT
3 u3 = 1

uT
1 u2 = 0

uT
1 u3 = 0

uT
2 u3 = 0

vT
1 v1 = 1

vT
2 v2 = 1

vT
3 v3 = 1

vT
1 v2 = 0

vT
1 v3 = 0

vT
2 v3 = 0
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The Singular Value Decomposition

The Singular Value Decomposition: General
For any real m × n matrix A there exist orthogonal matrices

U =
[

u1 · · · um
]
∈ Rm×m

V =
[

v1 · · · vn
]
∈ Rn×n

such that

UT AV = Σ = diag(σ1, . . . , σp) ∈ Rm×n

where p = min(m,n) and σ1 ≥ . . . ≥ σp ≥ 0. Equivalently,

A = UΣV T .

• Original formulation: E. Beltrami, 1873
• Stable, efficient algorithm: Golub & Reinsch, 1970
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The Singular Value Decomposition

Rank and the Four Subspaces

A = UΣV T = [u1, . . . ,ur ,ur+1, . . . ,um]



σ1
. . .

σr
0

. . .
0

0 · · · · · · 0
...

...
0 · · · · · · 0





vT
1
...

vT
r

vT
r+1
...

vT
n



[drawn for m > n]
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The Pseudoinverse

Linear Systems and Reality

Ax = b

• A,b come from measurements⇒ noisy entries
• Systems are typically incompatible
• Reinterpret Ax = b as x ∈ arg minx∈Rn ‖Ax− b‖2

• Residual vector r = Ax− b
• “Least-Squares solution of Ax = b”
• A.k.a. LSE solution (Least Squared-Error)
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The Pseudoinverse

Incompatibility and Under-Determinacy
• A system can be incompatible and its LSE solution can be

underdetermined
x1 + x2 = 1
x1 + x2 = 3

x3 = 2
A =

 1 1 0
1 1 0
0 0 1

 b =

 1
3
2


• An LSE solution turns out to be x = [1 1 2]T with residual

r = Ax− b =

 1 1 0
1 1 0
0 0 1

 1
1
2

−
 1

3
2

 =

 2
2
2

−
 1

3
2

 =

 1
−1

0

 ,

(split the residual evenly) which has norm
√

2

• Any x′ =

 1
1
2

+ α

 −1
1
0

 is as good as x
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The Pseudoinverse

Uniqueness

• So while the LSE solution always exists, it is not always
unique
• It is often convenient to have just one solution, uniquely

defined
• Of all solutions, pick the “shortest” one (minimum L2 norm)
• If you wanted to be cute:

x̂ = arg min
x∈arg min

y
‖Ay− b‖︸ ︷︷ ︸
a set

‖x‖

• x̂ turns out to be unique
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The Pseudoinverse

The Minimum-Norm LSE Solution
• Theorem: The minimum-norm least-squares solution to a linear system Ax = b, that is,

the shortest vector x that achieves the

min
x
‖Ax− b‖2 ,

is unique, and is given by
x̂ = V Σ†UT b (1)

where A = UΣV T is the SVD of A and

Σ† =



1/σ1 0 · · · 0
. . .

1/σr
...

...
0

. . .
0 0 · · · 0


• The matrix A† = V Σ†UT is called the pseudoinverse of A
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Homogeneous Linear System on the Unit Sphere

Homogeneous Linear Systems
• The pseudoinverse yields a fully general LSE solution to

Ax = b
• x̂ = the shortest vector x that achieves the minx ‖Ax− b‖
• So it works also when b = 0
• However, the solution is trivial:

The minimum-norm x that minimizes ‖Ax‖ is x = 0
• So if this is your problem, you are probably looking at the

wrong problem!
• More interesting (and different) problem:

x̂ ∈ arg min
‖x‖=1

‖Ax‖

• A constrained minimization problem: x ∈ unit sphere
• Solution is no longer necessarily unique
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Homogeneous Linear System on the Unit Sphere

LSE Solution of the Homogeneous Problem on the Sphere
Let

A = UΣV T

be the singular value decomposition of the m × n matrix A.
Then, the last column of V ,

x = vn

is a unit-norm least-squares solutions to the homogeneous
linear system

Ax = 0 .

Thus, if r = rank(A), the value of the residual is

min
‖x‖=1

‖Ax‖ = ‖Avn‖ =

{
0 if r < n
σn otherwise.

In this expression, σn is the last singular value of A
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