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L ool
The Four Fundamental Spaces of a Matrix

null(A) = span([0,0,1]7) A= l

row space(A) = span(first two rows)

range(A) = span(first two columns)

left null(A) = span(cross product of first two columns)
(comes out to be span([—1,0,v/3]7))

range(A) < row space(A)
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The Solutions of a Linear System
Ax=Db

where Ais m x n, rank r
e Key point:

b ¢ range(A) = no solutions
b € range(A) = 0" " solutions

(An affine space of solutions)
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Compatibility

¢ Incompatible:

2 0 X 0
0 1 = 0 0
0 1 {XZ} o @0

e Compatible:
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Under-Determined System
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Redundant and Invertible Systems

e Redundant:
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1ol =11

3o |Lt™®d |3
e |nvertible: o )
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30][x]| |3
* |nverse: ifo 1

-1 _ '
A _3[3 —2}

anifs ][5

(This is not how linear systems are typically solved)
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Summary
b in range(A)
incompatible
underdetermined
yes no
invertible redundant

¢ This is not operational!

e Orthogonal matrices — SVD — rank, bases for the four
spaces

e SVD gives us much more
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Orthogonal Matrices

A matrix V = [vy,...,Vv,] is orthogonal if its columns are
orthonormal

Orthonormal: v/ v; = §; (orthogonal and unit norm)
Orthogonal matrices have left-inverse V7

Square orthogonal matrices have left- and right-inverse V'
Orthogonal matrices do not change the norm of vectors:
[VX|]2=x"VTVx =x"x = ||x||?
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The Singular Value Decomposition: Geometry

b = Ax where A=
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The Singular Value Decomposition: Algebra
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The Singular Value Decomposition: General
For any real m x n matrix A there exist orthogonal matrices

U= [u - up|er™"
V= [v - v, ] eR™"

such that
UTAV =¥ = diag(oy,...,0p) € R™"
where p = min(m, n) and o1 > ... > 0, > 0. Equivalently,
A=UzVT.

e Original formulation: E. Beltrami, 1873
e Stable, efficient algorithm: Golub & Reinsch, 1970
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Rank and the Four Subspaces
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[drawn for m > n]
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N e eivell
Linear Systems and Reality

Ax=Db

A, b come from measurements = noisy entries
Systems are typically incompatible

Reinterpret Ax = b as x € argmin,_pn |AX — b||2
Residual vectorr = AX — b

“Least-Squares solution of Ax = b”

A.k.a. LSE solution (Least Squared-Error)
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| TeePeuddmens |
Incompatibility and Under-Determinacy

¢ A system can be incompatible and its LSE solution can be
underdetermined

Xi+x =1 110 1
Xx+x = 3 A=|110 b=|3
X3 = 2 00 1 2

e An LSE solution turns out to be x = [1 1 2] with residual

BHIHRHEHEHEER
r=Ax—-b= 1 1 0 1 -3 |=12]-|38|= —1 ,
Lo o0 1][2 2 2 2 0
(split the residual evenly) which has norm v/2
1

[ [ —1
e Any X' = 1]—1—04 1]isasgoodasx
2 0
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Uniqueness

¢ So while the LSE solution always exists, it is not always
unique

e |t is often convenient to have just one solution, uniquely
defined

e Of all solutions, pick the “shortest” one (minimum L, norm)
e |f you wanted to be cute:
X = arg min |||
xearg myin I|Ay — b||

J/

-~
aset

e X turns out to be unique
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The Minimum-Norm LSE Solution

® Theorem: The minimum-norm least-squares solution to a linear system Ax = b, that is,

the shortest vector x that achieves the

min [[AX — b]l2

is unique, and is given by

£=VvZiuTp

where A= U VT is the SVD of A and

r1/o4

¥t =

e The matrix AT = VZTUT is called the pseudoinverse of A
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Homogeneous Linear Systems

e The pseudoinverse yields a fully general LSE solution to
Ax=Db

e X = the shortest vector x that achieves the miny ||Ax — b||

e So it works also when b =0

e However, the solution is trivial:
The minimum-norm x that minimizes ||Ax|| isx =0

e So if this is your problem, you are probably looking at the
wrong problem!

e More interesting (and different) problem:

X € arg ||n?m || AX||

¢ A constrained minimization problem: x € unit sphere
e Solution is no longer necessarily unique
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LSE Solution of the Homogeneous Problem on the Sphere
Let
A=UxzV’

be the singular value decomposition of the m x n matrix A.
Then, the last column of V,

XZVn

is a unit-norm least-squares solutions to the homogeneous
linear system

Ax=0.
Thus, if r = rank(A), the value of the residual is
. 0 ifr<n
e IAI = l1Avall = { on otherwise.

In this expression, o, is the last singular value of A
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