Image Motion

COMPSCI 527 — Computer Vision

÷.

イロト イ母 トイヨ トイヨ トー

Outline

1 [Image Motion](#page-2-0)

- **2** [Constancy of Appearance](#page-4-0)
- **³** [Motion Field and Optical Flow](#page-6-0)
- **4** [The Aperture Problem](#page-8-0)
- **6** [Estimating the Motion Field](#page-10-0)
- **6** [The Lucas-Kanade Tracker](#page-11-0)

4 00 30

 $\mathcal{A} \cap \overline{\mathcal{B}} \rightarrow \mathcal{A} \subset \overline{\mathcal{B}} \rightarrow \mathcal{A} \subset \overline{\mathcal{B}} \rightarrow \mathcal{B}$

画

Continuous and Discrete Image

E

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Motion Field and Displacement

- Follow the image projection **x**(*t*) of a single world point
- *Displacement*: $\mathbf{d}(t, s) = \mathbf{x}(t) \mathbf{x}(s)$, a difference in positions
- *Motion field*: $\mathbf{v}(t) = \frac{d\mathbf{x}(t)}{dt}$, an instantaneous velocity
- A *field* b/c it can be defined for every **x** in the image plane

Constancy of Appearance

- *Images do not move*
- What is assumed to remain constant across images?
- Motion estimation is impossible without such an assumption
- Most generic assumption: The appearance of a point does not change with time or viewpoint
- If two image points in two images correspond, they look the same
- "Appearance:" Image *irradiance e*(**x**, *t*) (brightness)
- If colors differ, so do brightnesses most of the time, so color does not help much
- We only consider gray images and video from now on

э

イロト イ何 トイラ トイラト

Constancy of Appearance

- If two image points in two images correspond, they look the same
- If **x** at time *s* and **x** ′ at time *t* correspond, then $e(\mathbf{x}, s) = e(\mathbf{x}', t)$ (finite-displacement formulation)
- Equivalently, $\frac{de(\mathbf{x}(t),t)}{dt} = 0$ (differential formulation)
- This is the key constraint for motion estimation

Motion Field and Optical Flow

• Extreme violations of constancy of appearance:

B. K. P. Horn, *Robot Vision*, MIT Press, 1986

- Ill-defined distinction:
	- Motion field \approx true motion
	- Optical flow \approx locally observed motion
- Still assume constancy of appearance almost everywhere
- What else can we do?

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

The Brightness Change Constraint Equation

- The appearance of a point does not change with time or $\mathsf{viewpoint:} \quad \frac{\mathsf{de}(\mathbf{x}(t),t)}{\mathsf{d}t} = 0$
- Total derivative, not partial:

$$
\frac{d\mathbf{e}(\mathbf{x}(t), t)}{dt} \stackrel{\text{def}}{=} \lim_{\Delta t \to 0} \frac{\mathbf{e}(\mathbf{x}(t+\Delta t), t+\Delta t) - \mathbf{e}(\mathbf{x}(t), t)}{\Delta t}
$$

• Use chain rule on $\frac{de(\mathbf{x}(t),t)}{dt} = 0$ to obtain the *Brightness Change Constraint Equation* (BCCE)

$$
\frac{\partial \mathbf{e}}{\partial \mathbf{x}^T} \frac{d\mathbf{x}}{dt} + \frac{\partial \mathbf{e}}{\partial t} = 0
$$

- $\mathbf{v} \triangleq \frac{d\mathbf{a}}{dt}$ is the unknown motion field
- *This is the key constraint for motion estimation*

 $\frac{d\mathbf{r}(t),t}{dt}$ def lim_{△*t*→0} $\frac{e(\mathbf{x}(t), t+\Delta t)-e(\mathbf{x}(t), t)}{\Delta t}$ (Compare: [∂]*e*(**x**(*t*),*t*) $\frac{\Delta t$ $\frac{\Delta t$ $\frac{\Delta t$ [\)](#page-5-0) – $e(\mathbf{x}(t), t)}{\Delta t}$) Ω

The Aperture Problem

• Issues arise even when the appearance is constant

BCCE:
$$
\frac{\partial e}{\partial \mathbf{x}^T} \mathbf{v} + \frac{\partial e}{\partial t} = 0
$$

• One equation in two unknowns: the *aperture problem*

A.

重する

The Aperture Problem

BCCE:
$$
\frac{\partial e}{\partial \mathbf{x}^T} \mathbf{v} + \frac{\partial e}{\partial t} = 0
$$

- The BCCE is always under-determined: the *aperture problem*
- Cannot recover motion based on point measurements alone
- Can at most recover the *normal component* along the gradient ∇*e*(**x**) = [∂]*^e* ∂**x** *T* (if the gradient is nonzero):

$$
v(\mathbf{x}) \stackrel{\text{def}}{=} \|\nabla e(\mathbf{x})\|^{-1} \left[\nabla e(\mathbf{x})\right]^T \mathbf{v}(\mathbf{x})
$$

重

 \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}) \overline{AB}

Estimating the Motion Field

- Because of the aperture problem, we can only estimate several displacements **d** or motions **v** together *if we assume that they are somehow related*
- BCCE yields one constraint, the relation yields another: Estimation problems need to be *coupled* across the image
- *Global* estimation methods
	- A *data term* measures deviations from BCCE at every pixel in the image
	- A *smoothness term* measures deviations of the motion field **v**(**x**) from smoothness
	- Minimize a linear combination of the two types of terms, integrated over the image
	- Tend to blur the solution near motion boundaries (discontinuities in the motion field)
	- Will see some global methods later

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B}$

Local Estimation Methods

- Local methods are an alternative to global ones
- Basic idea:
	- Two images $f(\mathbf{x})$ and $g(\mathbf{x})$
	- The image displacement **d** in a small window *W*(**x***f*) around a pixel **x***^f* in *f* is assumed to be *constant over the window* (extreme local smoothness)
	- Require $f(\mathbf{x}) \approx g(\mathbf{x} + \mathbf{d})$ for each pixel $\mathbf{x} \in W(\mathbf{x}_f)$
	- Solve for the *one* displacement **d** that satisfies all these equations as much as possible
	- Attribute **d** to **x***^f*
- These are *window tracking* methods

 \sqrt{m}) \sqrt{m}) \sqrt{m}) \sqrt{m}

Window Tracking

- Given images $f(\mathbf{x})$ and $g(\mathbf{x})$, a point \mathbf{x}_f in image f , and a square window $\mathcal{W}(\mathbf{x}_f)$ of side-length 2 $h+1$ centered at $\mathbf{x}_f,$ what are the coordinates $\mathbf{x}_g = \mathbf{x}_f + \mathbf{d}^*(\mathbf{x}_f)$ of the corresponding window's center in image *g*?
- **d** ∗ (**x***f*) ∈ R 2 is the *displacement* of that point feature

イロト イ押 トイラト イラト

Assumptions

• Assumption 1: The whole window translates Needed to overcome the aperture problem

\n- Assumption 2:
$$
\mathbf{d}^*(\mathbf{x}_f) \ll h
$$
\n- Needed because we linearize a certain function over displacements
\n

Ε

イロト イ母 トイヨ トイヨト

Obvious Failure Points

• Multiple motions in the same window

(Less dramatic cases arise as well)

• Actual motion large compared with *h* We'll come back to this later

AD > < B > < B

General Window Tracking Strategy

- Let *w*(**x**) be the indicator function ("mask") of *W*(**0**) so $w(\mathbf{x} - \mathbf{x}_f)$ is the mask for $W(\mathbf{x}_f)$
- Measure the *dissimilarity* between *f* in *W*(**x***f*) and *g* in a candidate window $W(\mathbf{x}_f + \mathbf{d})$ with the *loss*

$$
L(\mathbf{x}_f, \mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) - f(\mathbf{x})]^2 \; w(\mathbf{x} - \mathbf{x}_f)
$$

- Finite-displacement, aggregate version of constancy of appearance
- Minimize *L*(**x***^f* , **d**) over **d**: **d** ∗ (**x***f*) = arg min**d**∈*^R L*(**x***^f* , **d**)
- The *search range R* $\subseteq \mathbb{R}^2$ is a square centered at the origin
- Half-side of *R* is ≪ *h* (the half-side of *W*)

イロト イ母 トイヨ トイヨ トーヨー

A Softer Window

- Dissimilarity $L(\mathbf{x}_f, \mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) f(\mathbf{x})]^2 \ w(\mathbf{x} \mathbf{x}_f)$
- Make *w*(**x**) a (truncated) Gaussian rather than a box

$$
w(\mathbf{x}) \propto \begin{cases} e^{\frac{1}{2}(\frac{\|\mathbf{x}\|}{\sigma})^2} & \text{if } |\mathbf{x}_1| \leq h \text{ and } |\mathbf{x}_2| \leq h \\ 0 & \text{otherwise} \end{cases}
$$

- *L*(**x***^f* , **d**) now depends more on what's around the window center
- Reduces the ill effects of multiple motions
- Does not eliminate them

重

イ何 トイヨ トイヨ トー

How to Minimize $L(\mathbf{x}_f, \mathbf{d})$?

- Method 1: Exhaustive search over a grid of **d**
- Advantages: Unlikely to be trapped in local minima

- Disadvantage: Fixed resolution
- Subpixel-accurate solutions are sometimes necessary
- Using a very fine grid would be very expensive
- Exhaustive search may provi[d](#page-16-0)e a good i[ni](#page-18-0)[ti](#page-16-0)[al](#page-17-0)[iz](#page-18-0)[a](#page-11-0)[tio](#page-23-0)[n](#page-10-0)

The Lucas-Kanade Tracker, 1981

- Method 2: Use a gradient-based method
- Can be faster than GD by noting that $L(\mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) - f(\mathbf{x})]^2$ *w*($\mathbf{x} - \mathbf{x}_f$) is "almost quadratic" in **d**, except that **d** is buried inside *g*
- Solution: linearize $g(x + d) \approx g(x) + [\nabla g(x)]^T d$
- This brings **d** "outside *g*"
- *L*(**d**) is now quadratic in **d**, and we can find a minimum in closed form by setting the gradient to zero
- Since the solution \mathbf{d}_1 relies on an approximation, we iterate: Shift q by d_1 to make the residual **d** smaller, and repeat
- This method works for losses that are sums of squares, and is called the *Newton-Raphson method*

イロト イ母 トイラ トイラ トーラー

Lucas-Kanade Overall Scheme

- Initialize: $d_0 = 0$
- Find a displacement s_1 by minimizing linearized $L(d_0 + s)$
- Shift *g* by s_1 to obtain g_1
- Accumulate: $\mathbf{d}_1 = \mathbf{d}_0 + \mathbf{s}_1$
- Find a displacement s_2 by minimizing linearized $L(d_1 + s)$
- Shift q_1 by s_2 to obtain q_2
- Accumulate: $d_2 = d_1 + s_2$

 \bullet . . .

イロト イ母 トイヨ トイヨ トーヨー

Lucas-Kanade Derivation

- Let $\mathbf{d}_t = \mathbf{s}_1 + \ldots + \mathbf{s}_t$ (accumulated shifts, initially 0)
- Let $g_t(\mathbf{x}) \stackrel{\text{def}}{=} g(\mathbf{x} + \mathbf{d}_t)$
- We seek $\mathbf{d}_{t+1} = \mathbf{d}_t + \mathbf{s}_{t+1}$ by minimizing the following over **s** $L(\mathbf{d}_t + \mathbf{s}) = \sum_{\mathbf{x}} [g_t(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})]^2 \; w(\mathbf{x} - \mathbf{x}_t)$ with linearization $g_t(\mathbf{x} + \mathbf{s}) \approx g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s}$, so that

$$
L(\mathbf{d}_t + \mathbf{s}) = \sum_{\mathbf{x}} [g_t(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})]^2 \ w(\mathbf{x} - \mathbf{x}_f)
$$

$$
\approx \sum_{\mathbf{x}} [g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})]^2 \ w(\mathbf{x} - \mathbf{x}_f),
$$

a quadratic function of **s**

イロト イ押 トイラ トイラトー

Lucas-Kanade Derivation, Cont'd

- Gradient of $\mathcal{L}(\mathbf{d}_t + \mathbf{s}) \approx \sum_{\mathbf{x}} \{g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})\}^2$ $w(\mathbf{x} - \mathbf{x}_t)$ is $\nabla L(\mathbf{d}_t + \mathbf{s}) \approx 2 \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) \{g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})\}$ w($\mathbf{x} - \mathbf{x}_t$)
- Setting to zero yields

G.

イロト イ母 トイラ トイラ トー

The Core System of Lucas-Kanade

Linear, 2×2 system

$$
A\boldsymbol{s}=\boldsymbol{b}
$$

where

$$
A = \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) [\nabla g_t(\mathbf{x})]^T \mathbf{w}(\mathbf{x} - \mathbf{x}_f)
$$

and

$$
\mathbf{b} = \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) [f(\mathbf{x}) - g_t(\mathbf{x})] \; w(\mathbf{x} - \mathbf{x}_f) \; .
$$

- Solution yields s_t (real-valued)
- Shift image g_t is by s_t by *bilinear interpolation* \rightarrow g_{t+1}
- Accumulate shifts $\mathbf{d}_{t+1} = \mathbf{d}_t + \mathbf{s}_t \quad (g_{t+1} \text{ is } g \text{ shifted by } \mathbf{d}_t)$
- This shift makes *f* and *g^t* more similar within the windows
- Repeat until convergence. Final **d***^t* is [th](#page-21-0)[e](#page-23-0) [a](#page-21-0)[ns](#page-22-0)[w](#page-23-0)[e](#page-11-0)[r](#page-23-0)

If Motion is Large, Track in a Pyramid

- A large motion at fine level is small at coarse level
- (Only drawing one frame per level, for simplicity)
- Start at the coarsest level (same window size at all levels)
- Multiply solution **d** by 2 to initialize tracking at the next level
- Motion is progressively refined at every level