
Image Motion

COMPSCI 527 — Computer Vision

COMPSCI 527 — Computer Vision Image Motion 1 / 24

Outline

1 Image Motion

2 Constancy of Appearance

3 Motion Field and Optical Flow

4 The Aperture Problem

5 Estimating the Motion Field

6 The Lucas-Kanade Tracker

COMPSCI 527 — Computer Vision Image Motion 2 / 24

Image Motion

Continuous and Discrete Image

COMPSCI 527 — Computer Vision Image Motion 3 / 24

Image Motion

Motion Field and Displacement

x1

2x

x(t)

x(s)

• Follow the image projection x(t) of a single world point
• Displacement: d(t , s) = x(t)− x(s), a difference in positions
• Motion field: v(t) = dx(t)

dt , an instantaneous velocity
• A field b/c it can be defined for every x in the image plane

COMPSCI 527 — Computer Vision Image Motion 4 / 24

Constancy of Appearance

Constancy of Appearance

• Images do not move
• What is assumed to remain constant across images?
• Motion estimation is impossible without such an assumption
• Most generic assumption: The appearance of a point does

not change with time or viewpoint
• If two image points in two images correspond, they look the

same
• “Appearance:” Image irradiance e(x, t) (brightness)
• If colors differ, so do brightnesses most of the time, so color

does not help much
• We only consider gray images and video from now on

COMPSCI 527 — Computer Vision Image Motion 5 / 24

Constancy of Appearance

Constancy of Appearance
x1

2x

x' = x(t)

x = x(s)

• If two image points in two images correspond, they look the
same

• If x at time s and x′ at time t correspond, then
e(x, s) = e(x′, t) (finite-displacement formulation)

• Equivalently, de(x(t),t)
dt = 0 (differential formulation)

• This is the key constraint for motion estimation

COMPSCI 527 — Computer Vision Image Motion 6 / 24

Motion Field and Optical Flow

Motion Field and Optical Flow
• Extreme violations of constancy of appearance:

B. K. P. Horn, Robot Vision, MIT Press, 1986

• Ill-defined distinction:
• Motion field ≈ true motion
• Optical flow ≈ locally observed motion

• Still assume constancy of appearance almost everywhere
• What else can we do?

COMPSCI 527 — Computer Vision Image Motion 7 / 24

Motion Field and Optical Flow

The Brightness Change Constraint Equation
• The appearance of a point does not change with time or

viewpoint: de(x(t),t)
dt = 0

• Total derivative, not partial:
de(x(t), t)

dt
def
= lim∆t→0

e(x(t+∆t), t+∆t)−e(x(t), t)
∆t

• Use chain rule on de(x(t),t)
dt = 0 to obtain the

Brightness Change Constraint Equation (BCCE)

∂e
∂xT

dx
dt

+
∂e
∂t

= 0

• v def
= dx

dt is the unknown motion field
• This is the key constraint for motion estimation

(Compare: ∂e(x(t),t)
∂t

def
= lim∆t→0

e(x(t), t+∆t)−e(x(t), t)
∆t)

COMPSCI 527 — Computer Vision Image Motion 8 / 24

The Aperture Problem

The Aperture Problem
• Issues arise even when the appearance is constant

BCCE:
∂e
∂xT v +

∂e
∂t

= 0

• One equation in two unknowns: the aperture problem

COMPSCI 527 — Computer Vision Image Motion 9 / 24

The Aperture Problem

The Aperture Problem

BCCE:
∂e
∂xT v +

∂e
∂t

= 0

• The BCCE is always under-determined:
the aperture problem

• Cannot recover motion based on point measurements alone
• Can at most recover the normal component along the

gradient ∇e(x) = ∂e
∂xT (if the gradient is nonzero):

v(x) def
= ∥∇e(x)∥−1 [∇e(x)]T v(x)

COMPSCI 527 — Computer Vision Image Motion 10 / 24

Estimating the Motion Field

Estimating the Motion Field
• Because of the aperture problem, we can only estimate

several displacements d or motions v together if we
assume that they are somehow related

• BCCE yields one constraint, the relation yields another:
Estimation problems need to be coupled across the image

• Global estimation methods
• A data term measures deviations from BCCE at every pixel

in the image
• A smoothness term measures deviations of the motion field

v(x) from smoothness
• Minimize a linear combination of the two types of terms,

integrated over the image
• Tend to blur the solution near motion boundaries

(discontinuities in the motion field)
• Will see some global methods later

COMPSCI 527 — Computer Vision Image Motion 11 / 24

The Lucas-Kanade Tracker

Local Estimation Methods

• Local methods are an alternative to global ones
• Basic idea:

• Two images f (x) and g(x)
• The image displacement d in a small window W (xf) around

a pixel xf in f is assumed to be constant over the window
(extreme local smoothness)

• Require f (x) ≈ g(x + d) for each pixel x ∈ W (xf)
• Solve for the one displacement d that satisfies all these

equations as much as possible
• Attribute d to xf

• These are window tracking methods

COMPSCI 527 — Computer Vision Image Motion 12 / 24

The Lucas-Kanade Tracker

Window Tracking
• Given images f (x) and g(x), a point xf in image f , and a

square window W (xf) of side-length 2h + 1 centered at xf ,
what are the coordinates xg = xf + d∗(xf) of the
corresponding window’s center in image g?

• d∗(xf) ∈ R2 is the displacement of that point feature

COMPSCI 527 — Computer Vision Image Motion 13 / 24

The Lucas-Kanade Tracker

Assumptions

• Assumption 1: The whole window translates
Needed to overcome the aperture problem

• Assumption 2: d∗(xf) ≪ h
Needed because we linearize a certain function over
displacements

COMPSCI 527 — Computer Vision Image Motion 14 / 24

The Lucas-Kanade Tracker

Obvious Failure Points

• Multiple motions in the same window

(Less dramatic cases arise as well)
• Actual motion large compared with h

We’ll come back to this later

COMPSCI 527 — Computer Vision Image Motion 15 / 24

The Lucas-Kanade Tracker

General Window Tracking Strategy
• Let w(x) be the indicator function (“mask”) of W (0)

so w(x − xf) is the mask for W (xf)

• Measure the dissimilarity between f in W (xf) and g in a
candidate window W (xf + d) with the loss

L(xf ,d) =
∑

x

[g(x + d)− f (x)]2 w(x − xf)

• Finite-displacement, aggregate version of constancy of
appearance

• Minimize L(xf ,d) over d: d∗(xf) = argmind∈R L(xf ,d)
• The search range R ⊆ R2 is a square centered at the origin
• Half-side of R is ≪ h (the half-side of W)

COMPSCI 527 — Computer Vision Image Motion 16 / 24

The Lucas-Kanade Tracker

A Softer Window
• Dissimilarity L(xf ,d) =

∑
x[g(x + d)− f (x)]2 w(x − xf)

• Make w(x) a (truncated) Gaussian rather than a box

w(x) ∝

{
e

1
2(

∥x∥
σ)

2

if |x1| ≤ h and |x2| ≤ h
0 otherwise

• L(xf ,d) now depends more on what’s around the window
center

• Reduces the ill effects of multiple motions
• Does not eliminate them

COMPSCI 527 — Computer Vision Image Motion 17 / 24

The Lucas-Kanade Tracker

How to Minimize L(xf ,d)?
• Method 1: Exhaustive search over a grid of d
• Advantages: Unlikely to be trapped in local minima

• Disadvantage: Fixed resolution
• Subpixel-accurate solutions are sometimes necessary
• Using a very fine grid would be very expensive
• Exhaustive search may provide a good initialization

COMPSCI 527 — Computer Vision Image Motion 18 / 24

The Lucas-Kanade Tracker

The Lucas-Kanade Tracker, 1981
• Method 2: Use a gradient-based method
• Can be faster than GD by noting that

L(d) =
∑

x[g(x + d)− f (x)]2 w(x − xf) is “almost quadratic”
in d, except that d is buried inside g

• Solution: linearize g(x + d) ≈ g(x) + [∇g(x)]T d
• This brings d “outside g”
• L(d) is now quadratic in d, and we can find a minimum in

closed form by setting the gradient to zero
• Since the solution d1 relies on an approximation, we iterate:

Shift g by d1 to make the residual d smaller, and repeat
• This method works for losses that are sums of squares, and

is called the Newton-Raphson method

COMPSCI 527 — Computer Vision Image Motion 19 / 24

The Lucas-Kanade Tracker

Lucas-Kanade Overall Scheme

• Initialize: d0 = 0

• Find a displacement s1 by minimizing linearized L(d0 + s)
• Shift g by s1 to obtain g1

• Accumulate: d1 = d0 + s1

• Find a displacement s2 by minimizing linearized L(d1 + s)
• Shift g1 by s2 to obtain g2

• Accumulate: d2 = d1 + s2

• . . .

COMPSCI 527 — Computer Vision Image Motion 20 / 24

The Lucas-Kanade Tracker

Lucas-Kanade Derivation
• Let dt = s1 + . . .+ st (accumulated shifts, initially 0)

• Let gt(x)
def
= g(x + dt)

• We seek dt+1 = dt + st+1 by minimizing the following over s
L(dt + s) =

∑
x[gt(x + s)− f (x)]2 w(x − xf)

with linearization gt(x + s) ≈ gt(x) + [∇gt(x)]T s, so that

L(dt + s) =
∑

x

[gt(x + s)− f (x)]2 w(x − xf)

≈
∑

x

[gt(x) + [∇gt(x)]T s − f (x)]2 w(x − xf) ,

a quadratic function of s

COMPSCI 527 — Computer Vision Image Motion 21 / 24

The Lucas-Kanade Tracker

Lucas-Kanade Derivation, Cont’d
• Gradient of

L(dt + s) ≈
∑

x{gt(x) + [∇gt(x)]T s − f (x)}2 w(x − xf) is
∇L(dt+s) ≈ 2

∑
x ∇gt(x){gt(x)+[∇gt(x)]T s−f (x)} w(x−xf)

• Setting to zero yields

COMPSCI 527 — Computer Vision Image Motion 22 / 24

The Lucas-Kanade Tracker

The Core System of Lucas-Kanade
Linear, 2 × 2 system

As = b

where
A =

∑
x

∇gt(x)[∇gt(x)]T w(x − xf)

and
b =

∑
x

∇gt(x)[f (x)− gt(x)] w(x − xf) .

• Solution yields st (real-valued)
• Shift image gt is by st by bilinear interpolation → gt+1

• Accumulate shifts dt+1 = dt + st (gt+1 is g shifted by dt)
• This shift makes f and gt more similar within the windows
• Repeat until convergence. Final dt is the answer

COMPSCI 527 — Computer Vision Image Motion 23 / 24

The Lucas-Kanade Tracker

If Motion is Large, Track in a Pyramid

• A large motion at fine level is small at coarse level
• (Only drawing one frame per level, for simplicity)
• Start at the coarsest level (same window size at all levels)
• Multiply solution d by 2 to initialize tracking at the next level
• Motion is progressively refined at every level

COMPSCI 527 — Computer Vision Image Motion 24 / 24

	Image Motion
	Constancy of Appearance
	Motion Field and Optical Flow
	The Aperture Problem
	Estimating the Motion Field
	The Lucas-Kanade Tracker

