Image Motion

COMPSCI 527 — Computer Vision

COMPSCI 527 — Computer Vision

э

Outline

Image Motion

- 2 Constancy of Appearance
- **3** Motion Field and Optical Flow
- 4 The Aperture Problem
- 5 Estimating the Motion Field
- 6 The Lucas-Kanade Tracker

< 回 > < 回 > < 回 >

Continuous and Discrete Image

Motion Field and Displacement

- Follow the image projection x(t) of a single world point
- Displacement: $\mathbf{d}(t, s) = \mathbf{x}(t) \mathbf{x}(s)$, a difference in positions
- *Motion field*: $\mathbf{v}(t) = \frac{d\mathbf{x}(t)}{dt}$, an instantaneous velocity
- A field b/c it can be defined for every x in the image plane

< 🗇 🕨 < 🖻 🕨

Constancy of Appearance

- Images do not move
- What is assumed to remain constant across images?
- Motion estimation is impossible without such an assumption
- Most generic assumption: The appearance of a point does not change with time or viewpoint
- If two image points in two images correspond, they look the same
- "Appearance:" Image *irradiance* e(**x**, *t*) (brightness)
- If colors differ, so do brightnesses most of the time, so color does not help much
- We only consider gray images and video from now on

・ロッ ・雪 ・ ・ ヨ ・ ・

Constancy of Appearance

- If two image points in two images correspond, they look the same
- If x at time s and x' at time t correspond, then
 e(x, s) = e(x', t) (finite-displacement formulation)
- Equivalently, $\frac{de(\mathbf{x}(t),t)}{dt} = 0$ (differential formulation)
- · This is the key constraint for motion estimation

Motion Field and Optical Flow

• Extreme violations of constancy of appearance:

B. K. P. Horn, Robot Vision, MIT Press, 1986

- Ill-defined distinction:
 - Motion field \approx true motion
 - Optical flow \approx locally observed motion
- Still assume constancy of appearance almost everywhere
- What else can we do?

A (a) < (b) </p>

The Brightness Change Constraint Equation

- The appearance of a point does not change with time or viewpoint: ^{de(x(t),t)}/_{dt} = 0
- Total derivative, not partial:

$$\frac{de(\mathbf{x}(t), t)}{dt} \stackrel{\text{def}}{=} \lim_{\Delta t \to 0} \frac{e(\mathbf{x}(t+\Delta t), t+\Delta t) - e(\mathbf{x}(t), t)}{\Delta t}$$

• Use chain rule on $\frac{de(\mathbf{x}(t),t)}{dt} = 0$ to obtain the Brightness Change Constraint Equation (BCCE)

$$\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}^{\mathsf{T}}} \frac{d \boldsymbol{x}}{d t} + \frac{\partial \boldsymbol{e}}{\partial t} = \boldsymbol{0}$$

- $\mathbf{v} \stackrel{\text{def}}{=} \frac{d\mathbf{x}}{dt}$ is the unknown motion field
- This is the key constraint for motion estimation

(Compare: $\frac{\partial e(\mathbf{x}(t),t)}{\partial t} \stackrel{\text{def}}{=} \lim_{\Delta t \to 0} \frac{e(\mathbf{x}(t), t + \Delta t) - e(\mathbf{x}(t), t)}{\Delta t}$)

The Aperture Problem

Issues arise even when the appearance is constant

BCCE:
$$\frac{\partial e}{\partial \mathbf{x}^T} \mathbf{v} + \frac{\partial e}{\partial t} = \mathbf{0}$$

• One equation in two unknowns: the aperture problem

The Aperture Problem

BCCE:
$$\frac{\partial e}{\partial \mathbf{x}^T} \mathbf{v} + \frac{\partial e}{\partial t} = \mathbf{0}$$

- The BCCE is always under-determined: the *aperture problem*
- Cannot recover motion based on point measurements alone
- Can at most recover the *normal component* along the gradient $\nabla e(\mathbf{x}) = \frac{\partial e}{\partial \mathbf{x}^T}$ (if the gradient is nonzero):

$$\mathbf{v}(\mathbf{x}) \stackrel{\text{def}}{=} \|\nabla \boldsymbol{e}(\mathbf{x})\|^{-1} [\nabla \boldsymbol{e}(\mathbf{x})]^T \mathbf{v}(\mathbf{x})$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Estimating the Motion Field

- Because of the aperture problem, we can only estimate several displacements d or motions v together *if we* assume that they are somehow related
- BCCE yields one constraint, the relation yields another: Estimation problems need to be *coupled* across the image
- Global estimation methods
 - A *data term* measures deviations from BCCE at every pixel in the image
 - A smoothness term measures deviations of the motion field v(x) from smoothness
 - Minimize a linear combination of the two types of terms, integrated over the image
 - Tend to blur the solution near motion boundaries (discontinuities in the motion field)
 - Will see some global methods later

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Local Estimation Methods

- Local methods are an alternative to global ones
- Basic idea:
 - Two images $f(\mathbf{x})$ and $g(\mathbf{x})$
 - The image displacement d in a small window W(x_f) around a pixel x_f in f is assumed to be *constant over the window* (extreme local smoothness)
 - Require $f(\mathbf{x}) \approx g(\mathbf{x} + \mathbf{d})$ for each pixel $\mathbf{x} \in W(\mathbf{x}_f)$
 - Solve for the one displacement d that satisfies all these equations as much as possible
 - Attribute **d** to **x**_f
- These are window tracking methods

・ 同 ト ・ ヨ ト ・ ヨ ト

Window Tracking

- Given images f(x) and g(x), a point x_f in image f, and a square window W(x_f) of side-length 2h + 1 centered at x_f, what are the coordinates x_g = x_f + d^{*}(x_f) of the corresponding window's center in image g?
- $\mathbf{d}^*(\mathbf{x}_f) \in \mathbb{R}^2$ is the *displacement* of that point feature

< ロ > < 同 > < 回 > < 回 > .

Assumptions

• Assumption 1: The whole window translates Needed to overcome the aperture problem

・ 同 ト ・ ヨ ト ・ ヨ ト

Obvious Failure Points

Multiple motions in the same window

(Less dramatic cases arise as well)

 Actual motion large compared with *h* We'll come back to this later

General Window Tracking Strategy

- Let w(x) be the indicator function ("mask") of W(0)
 so w(x x_f) is the mask for W(x_f)
- Measure the *dissimilarity* between *f* in *W*(**x**_{*f*}) and *g* in a candidate window *W*(**x**_{*f*} + **d**) with the *loss*

$$\mathcal{L}(\mathbf{x}_f, \mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) - f(\mathbf{x})]^2 w(\mathbf{x} - \mathbf{x}_f)$$

- Finite-displacement, aggregate version of constancy of appearance
- Minimize $L(\mathbf{x}_{f}, \mathbf{d})$ over \mathbf{d} : $\mathbf{d}^{*}(\mathbf{x}_{f}) = \arg \min_{\mathbf{d} \in R} L(\mathbf{x}_{f}, \mathbf{d})$
- The search range $R \subseteq \mathbb{R}^2$ is a square centered at the origin
- Half-side of *R* is ≪ *h* (the half-side of *W*)

A Softer Window

- Dissimilarity $L(\mathbf{x}_f, \mathbf{d}) = \sum_{\mathbf{x}} [g(\mathbf{x} + \mathbf{d}) f(\mathbf{x})]^2 w(\mathbf{x} \mathbf{x}_f)$
- Make $w(\mathbf{x})$ a (truncated) Gaussian rather than a box

$$w(\mathbf{x}) \propto \begin{cases} e^{\frac{1}{2} \left(\frac{\|\mathbf{x}\|}{\sigma} \right)^2} & \text{if } |x_1| \le h \text{ and } |x_2| \le h \\ 0 & \text{otherwise} \end{cases}$$

- L(x_f, d) now depends more on what's around the window center
- Reduces the ill effects of multiple motions
- Does not eliminate them

伺 ト イ ヨ ト イ ヨ ト

How to Minimize $L(\mathbf{x}_f, \mathbf{d})$?

- Method 1: Exhaustive search over a grid of d
- Advantages: Unlikely to be trapped in local minima

- Disadvantage: Fixed resolution
- Subpixel-accurate solutions are sometimes necessary
- Using a very fine grid would be very expensive
- Exhaustive search may provide a good initialization

The Lucas-Kanade Tracker, 1981

- Method 2: Use a gradient-based method
- Can be faster than GD by noting that
 L(d) = ∑_x[g(x + d) - f(x)]² w(x - x_f) is "almost quadratic"
 in d, except that d is buried inside g
- Solution: linearize $g(\mathbf{x} + \mathbf{d}) \approx g(\mathbf{x}) + [\nabla g(\mathbf{x})]^T \mathbf{d}$
- This brings **d** "outside g"
- *L*(**d**) is now quadratic in **d**, and we can find a minimum in closed form by setting the gradient to zero
- Since the solution d₁ relies on an approximation, we iterate:
 Shift g by d₁ to make the residual d smaller, and repeat
- This method works for losses that are sums of squares, and is called the *Newton-Raphson method*

Lucas-Kanade Overall Scheme

- Initialize: $\mathbf{d}_0 = \mathbf{0}$
- Find a displacement s₁ by minimizing linearized L(d₀ + s)
- Shift g by s₁ to obtain g₁
- Accumulate: $\mathbf{d}_1 = \mathbf{d}_0 + \mathbf{s}_1$
- Find a displacement s₂ by minimizing linearized L(d₁ + s)
- Shift g_1 by \mathbf{s}_2 to obtain g_2
- Accumulate: d₂ = d₁ + s₂

Lucas-Kanade Derivation

- Let $\mathbf{d}_t = \mathbf{s}_1 + \ldots + \mathbf{s}_t$ (accumulated shifts, initially **0**)
- Let $g_t(\mathbf{x}) \stackrel{\text{def}}{=} g(\mathbf{x} + \mathbf{d}_t)$
- We seek $\mathbf{d}_{t+1} = \mathbf{d}_t + \mathbf{s}_{t+1}$ by minimizing the following over \mathbf{s} $L(\mathbf{d}_t + \mathbf{s}) = \sum_{\mathbf{x}} [g_t(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})]^2 w(\mathbf{x} - \mathbf{x}_f)$ with linearization $g_t(\mathbf{x} + \mathbf{s}) \approx g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s}$, so that

$$\begin{split} \mathcal{L}(\mathbf{d}_t + \mathbf{s}) &= \sum_{\mathbf{x}} [g_t(\mathbf{x} + \mathbf{s}) - f(\mathbf{x})]^2 \ w(\mathbf{x} - \mathbf{x}_f) \\ &\approx \sum_{\mathbf{x}} [g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})]^2 \ w(\mathbf{x} - \mathbf{x}_f) \ , \end{split}$$

a quadratic function of **s**

Lucas-Kanade Derivation, Cont'd

- Gradient of $L(\mathbf{d}_t + \mathbf{s}) \approx \sum_{\mathbf{x}} \{g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})\}^2 w(\mathbf{x} - \mathbf{x}_f) \text{ is}$ $\nabla L(\mathbf{d}_t + \mathbf{s}) \approx 2 \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) \{g_t(\mathbf{x}) + [\nabla g_t(\mathbf{x})]^T \mathbf{s} - f(\mathbf{x})\} w(\mathbf{x} - \mathbf{x}_f)$
- Setting to zero yields

-

The Core System of Lucas-Kanade

Linear, 2×2 system

$$A\mathbf{s} = \mathbf{b}$$

where

$$\boldsymbol{A} = \sum_{\mathbf{x}} \nabla g_t(\mathbf{x}) [\nabla g_t(\mathbf{x})]^T \ \boldsymbol{w}(\mathbf{x} - \mathbf{x}_f)$$

and

$$\mathbf{b} = \sum_{\mathbf{x}}
abla g_t(\mathbf{x}) [f(\mathbf{x}) - g_t(\mathbf{x})] \; w(\mathbf{x} - \mathbf{x}_f) \; .$$

- Solution yields **s**_t (real-valued)
- Shift image g_t is by \mathbf{s}_t by bilinear interpolation $\rightarrow g_{t+1}$
- Accumulate shifts $\mathbf{d}_{t+1} = \mathbf{d}_t + \mathbf{s}_t$ $(g_{t+1} \text{ is } g \text{ shifted by } \mathbf{d}_t)$
- This shift makes f and gt more similar within the windows
- Repeat until convergence. Final **d**_t is the answer

If Motion is Large, Track in a Pyramid

- A large motion at fine level is small at coarse level
- (Only drawing one frame per level, for simplicity)
- Start at the coarsest level (same window size at all levels)
- Multiply solution **d** by 2 to initialize tracking at the next level
- Motion is progressively refined at every level