Deep Networks for Image-to-Image Prediction

COMPSCI 527 — Computer Vision

Outline

- 1 Image-to Image Prediction
- Motion Estimation Classical Approaches Methods based on Neural Networks FlowNet, 2015 Unsupervised Training?
- 3 Image Segmentation Architecture

Image-to Image Prediction

- Recognition: 1 image → K label scores (funnel)
- Motion estimation: 2 images → 2 images
- Image segmentation: 1 image → K score images (K soft-max scores at every pixel)

www.irisa.fr/texmex/people/jain

thalles.github.io/deep_segmentation_network/

Architecture of Image-to Image Predictors

- The output is as large as the input
- Retinotopic output: values map to pixel locations
- The funnel-like architecture cannot be used
- An hourglass architecture is used instead

(image from Dosovitskiy et al., FlowNet, 2015)

- A. k. a. contraction-expansion, encoder-decoder, . . .
- Let's see image motion estimation first, then image segmentation

Classical Approaches to Motion Estimation

- For decades, global methods were cast as optimization problems to be solved at inference time
- Roughly: Find a flow field $\mathbf{u}(\mathbf{x})$ such that $\int [g(\mathbf{x} + \mathbf{u}(\mathbf{x})) f(\mathbf{x})]^2 d\mathbf{x} + \lambda \int \left\| \frac{\partial \mathbf{u}}{\partial \mathbf{x}^T} \right\|^2 d\mathbf{x} \text{ is small}$
- The resulting normal equation is discretized, and leads to a large, linear system in the unknowns u(x), one 2-vector per pixel
- The flow is not smooth at motion boundaries, various techniques have been proposed to improve results there
- However, these methods seem to work fairly well, see
 https://people.csail.mit.edu/celiu/OpticalFlow/

Why Use Neural Networks?

• A method based on neural networks needs many examples $(\mathbf{x}, \mathbf{y}) = ((f, g), \mathbf{u})$

Why Use Neural Networks?

- Annotation is difficult: Hundreds of thousands or millions of flow vectors per example
- How do we know the flow at every pixel anyway?
- So why bother with deep learning?
- Replace a complex optimization algorithm run at inference time with a deep network
- At inference time, feed two images to a network and read the result at the output: fast inference
- Training is an even more complex optimization problem, but runs at training time
- Optimization assumes a very specific motion model. The neural network does not
- Therefore, a neural network might do well even where the optimization algorithm doesn't

Training Data and Loss

- Big question: How to annotate training data?
- Current best answer: computer graphics
- Sintel: http://sintel.is.tue.mpg.de
- Main limitation: Is graphics a good proxy for real video?
- Computer graphics is getting better and better
- Not hard to make good movies look worse!
- Loss: Discrepancy between true flow v(x) and computed flow u(x)
- End-Point Error (EPE): $\sqrt{\frac{1}{|\Omega|} \sum_{\mathbf{x} \in \Omega} \|\mathbf{u}(\mathbf{x}) \mathbf{v}(\mathbf{x})\|^2}$

Architectures: The Recognition Funnel

A CNN used for classification looks like a funnel:

- Image in, category out
- Representation becomes more and more abstract
- For flow, the output is image-like, so the funnel won't work

Architectures: The Image-to-Image Hourglass

However, abstraction is still useful

- Flow at low resolution may be coarse but less ambiguous
- First build an abstract view, then restore detail

Architecture Detail: FlowNet, 2015

• Encoder (or contraction)

Decoder (or expansion)

Note the gray skip connections to restore detail

How to Decode: Up-Convolution

- We don't just want to upsample: Upsampling needs to be trainable
- Up-convolution is one way to upsample
- Best understood in the 1D case first
- Convolution with stride reduces resolution
- How to increase resolution instead?

Strided Convolution in Matrix Form

$$g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x)$$

- Example: $\mathbf{f} \in \mathbb{R}^{12}$, stride s=2, "same" format $\mathbf{k} = [a,b,c,d,e]$
- Then, $\mathbf{g} \in \mathbb{R}^6$ and $\mathbf{g} = K\mathbf{f}$ with $K \in \mathbb{R}^{6 \times 12}$

$$K = \begin{bmatrix} c & b & a \\ e & d & c & b & a \\ & e & d & c & b & a \\ & & & e & d & c & b & a \\ & & & & e & d & c & b & a \\ & & & & & e & d & c & b \end{bmatrix}$$

Up-Convolution

• The up-convolution corresponding to $\mathbf{g} = K\mathbf{f}$ is defined as $\varphi = K^T\mathbf{g}$, not the inverse of K

g_0	g_1	g_2	g_3	g_4	g 5
С	е				
b	d				
а	С	е			
	b	d			
	а	С	е		
		b	d		
		а	С	е	
			b	d	
			а	С	е
				b	d
				а	С
					b

Rewrite Up-Convolution as a Convolution

• *Dilute* **g** into γ with stride s=2:

$$(g_0,g_1,g_2,g_3,g_4,g_5) o (g_0,0,g_1,0,g_2,0,g_3,0,g_4,0,g_5,0)$$

g_0	$_{0}^{\gamma_{1}}$	$rac{\gamma_2}{g_1}$	$_{0}^{\gamma_{3}}$	g_2	$_{0}^{\gamma_{5}}$	g_3	$_{0}^{\gamma_{7}}$	$\frac{\gamma_8}{g_4}$	$_0^{\gamma_9}$	$rac{\gamma_{10}}{g_5}$	${\overset{\gamma_{11}}{0}}$
С		е									
b		d									
а		С		е							
		b		d							
		а		С		е					
				b		d					
				а		С		e			
						b		d			
						а		С		е	
								b		d	
								а		С	
										b	

- Square matrix
- · Can fill new columns with anything we like

Up-Convolution as a Convolution

g_0	$_{0}^{\gamma_{1}}$	$rac{\gamma_2}{g_1}$	$_{0}^{\gamma_{3}}$	$\frac{\gamma_4}{g_2}$	$_0^{\gamma_5}$	g_3	$_{0}^{\gamma _{7}}$	$\frac{\gamma_8}{g_4}$	$_{0}^{\gamma_{9}}$	$\frac{\gamma_{10}}{g_5}$	$^{\gamma_{11}}_{0}$
С	d	е									
b	С	d	е								
а	b	С	d	е							
	а	b	С	d	е						
		а	b	С	d	е					
			а	b	С	d	e				
				а	b	С	d	е			
					а	b	С	d	е		
						а	b	С	d	е	
							а	b	С	d	е
								а	b	С	d
									а	b	С

 Up-convolution is the convolution of a diluted input with the reverse of the original kernel k, that is, with

$$\kappa(y) \stackrel{\text{def}}{=} k(p-1-y)$$

Up-convolution can be written as follows:

$$\phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x-y)$$

Up-Convolution Summary

- To reduce resolution, convolve and then sample
- Efficiently, do convolution with stride:

$$g(y) = \sum_{x=0}^{p-1} k(x) f(sy - x)$$

- To increase resolution, dilute and then convolve
- Efficiently, do diluted convolution

$$\phi(x) = \sum_{y=0}^{p-1} \kappa(y) \gamma(x-y)$$
where $\gamma(y) = \begin{cases} g\left(\frac{y}{s}\right) & \text{if } y \stackrel{s}{=} 0\\ 0 & \text{otherwise} \end{cases}$ for $0 \le y \le sn$

• More efficiently: $\phi(x) = \sum_{\substack{y=x, y=0}}^{p-1} \kappa(y) \ g\left(\frac{x-y}{s}\right)$

FlowNet, 2015

Demos at https://www.youtube.com/watch?v=JSzUdVBmQP4

Unsupervised Training?

- Loss based on End-Point Error: ||u(x) v(x)||²
- Requires supervision v
- Loss based on Photometric Error + Regularization Term: $[g(\mathbf{x} + \mathbf{u}(\mathbf{x})) f(\mathbf{x})]^2 + \lambda \left\| \frac{\partial \mathbf{u}}{\partial \mathbf{x}^T} \right\|^2$
- Only f, g are needed
- Issue: Correct flow implies small loss, but the converse is not necessarily true, mainly because of the aperture problem
- Works, but not as well
- · However, we can bring massive amounts of data to bear

Architectures for Image Segmentation

https://mi.eng.cam.ac.uk/projects/segnet/(2015)

- Still encoder-decoder
- K soft-max scores per pixel
- Pooling in the encoder
- Upsamples by "unpooling", copies pooling indices from the encoder

