Rigid Geometric Transformations and the Pinhole Camera Model

COMPSCI 527 — Computer Vision

4 何 ▶ 4 三 ト

Outline

1 [Coordinates and Vector Operators](#page-2-0) [\(Orthogonal Projection\)](#page-3-0) [Cross Product](#page-3-0) [Triple Product](#page-5-0)

- **2** [Rigid Transformations](#page-6-0) **[Translations](#page-8-0) [Rotations](#page-9-0)** [Coordinate Transformations](#page-12-0)
- **3** [The Pinhole Camera](#page-13-0)

Ξ

医单侧 医单

Rigid Transformations

- 3D reconstruction: Given corresponding points in two (or more) images taken from different viewpoints, find the relative pose of the two cameras and 3D coordinates of the world points
- The relative motion between a camera and an otherwise static scene is a rigid transformation: rotation + translation
- Reconstruction techniques also require knowing about othogonal projection, cross product, triple product
- All vectors are in \mathbb{R}^3

医单位 医单位

The Cross Product

• Geometry: The cross product of two three-dimensional vectors **a** and **b** is a vector **c** orthogonal to both **a** and **b**, oriented so that the triple **a**, **b**, **c** is right-handed, and with magnitude

$$
\|\mathbf{c}\| \ = \ \|\mathbf{a} \times \mathbf{b}\| \ = \ \|\mathbf{a}\| \, \|\mathbf{b}\| \, \sin \theta
$$

where θ is the smaller angle between **a** and **b**

- The magnitude of $\mathbf{a} \times \mathbf{b}$ is the area of a parallelogram with sides **a** and **b**
- Algebra: **c** = **a** \times **b** = $\Big|$ *a^x a^y a^z* b_x b_y b_z

 $=(a_yb_z-a_zb_y,\ a_zb_x-a_xb_z,\ a_xb_y-a_yb_x)^T$

• Easy to check that $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

 \equiv

イロト イ押 トイラト イラトー

The Cross-Product Matrix

- $\bullet\, \; \mathbf{c} = (a_yb_z a_zb_y\,,\; a_zb_x a_xb_z\,,\; a_xb_y a_yb_x)^T$ is linear in \mathbf{b}
- Therefore, there exists a 3×3 matrix $[a]_{\times}$ such that
- $c = a \times b = [a]_{\times}b$ $\mathbf{c} =$ $\sqrt{ }$ $\overline{}$ *cx cy cz* 1 \vert = $\sqrt{ }$ $\overline{}$ 1 $\overline{1}$ $\sqrt{ }$ $\overline{}$ *bx by bz* 1 $\overline{1}$ • The matrix $[\mathbf{a}]_{\times}$ is skew-symmetric: $[\mathbf{a}]_{\times}^{T} = -[\mathbf{a}]_{\times}$

Ε

イ何 トイヨ トイヨ トー

The Triple Product

- Definition: $det([\mathbf{a}, \mathbf{b}, \mathbf{c}]) = \mathbf{a}^{\mathsf{T}}(\mathbf{b} \times \mathbf{c})$
	- $= a_x(b_vc_z b_zc_y) a_y(b_xc_z b_zc_x) + a_z(b_xc_y b_vc_x)$
- Signed volume of parallelepiped

• Easy to check: $\mathbf{a}^T(\mathbf{b} \times \mathbf{c}) = \mathbf{b}^T(\mathbf{c} \times \mathbf{a}) = \mathbf{c}^T(\mathbf{a} \times \mathbf{b}) =$ $-\mathbf{a}^{\mathsf{T}}(\mathbf{c} \times \mathbf{b}) = -\mathbf{c}^{\mathsf{T}}(\mathbf{b} \times \mathbf{a}) = -\mathbf{b}^{\mathsf{T}}(\mathbf{a} \times \mathbf{c})$

Ξ

イロト イ押 トイラト イラト

Multiple Reference Systems

- If we associate a reference system to a camera and the camera moves, or we consider multiple cameras, or we consider one camera and the world, we have multiple reference systems
- Point coordinates are *x*, *y*, *z*
- Left superscript denotes which reference system coordinates are expressed in: ¹*y*
- Subscripts denote which point or reference system we are talking about: x_2
- ² y_3 is the y coordinate of point 3 in reference system 2

4 何 ▶ 4 戸 ▶

Multiple Reference Systems

- A zero left superscript can be omitted: ${}^{0}Z = Z$
- The origin of a reference system is **t** (for "translation")

1

 $\overline{1}$

- We always have i **t**_{*i*} $=$ $\sqrt{ }$ $\overline{1}$ 0 0 0
- If **i**, **j**, **k** are the unit points of a reference system, we always have $\begin{bmatrix} i\mathbf{i}_i & i\mathbf{j}_i & i\mathbf{k}_i \end{bmatrix} = I$, the 3×3 identity matrix

Translations

• No rotation:
$$
{}^{0}R_{1} = R_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

- Both systems right-handed
- \bullet ${}^0{\bf t}_1={\bf t}_1$ is the origin of reference system 1 expressed in reference system 0
- Given **p** = ⁰**p**, we have ¹**p** = ⁰**p** − ⁰ **t**¹ = **p** − **t**¹

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$

- No translation: ${}^0{\bf t}_1={\bf t}_1=$ $\sqrt{ }$ $\overline{}$ 0 0 0 \vert
- Both systems right-handed
- \bullet $\mathbf{i}_1, \mathbf{j}_1, \mathbf{k}_1$ are the unit vectors of reference system 1 expressed in reference system 0
- Given $\mathbf{p} = \begin{bmatrix} 0 \\ p \end{bmatrix}$, what is $\begin{bmatrix} 1 \\ p \end{bmatrix}$?

イロト イ団 トイラト

Rotations in General

- More generally, ${}^b{\bf p}={}^a\!R_b{}^a{\bf p}$ where ${}^a\!R_b=$ $\sqrt{ }$ $\overline{}$ a _{**j** b </sup>
 a _{*f*} f
 b _{*f*} f}
 a **k**_{*f*} f </sub> 1 $\overline{1}$
- Rotations are reversible, so there exists ${}^{b}\!R_{a} = {}^{a}\!R_{b}^{-1}$ *b*
- \bullet ${}^b\!R_a = {}^a\!R_b^T$ because ${}^a\!R_b$ is orthogonal
- Cross-product is covariant with rotations: $(R**a**) \times (R**b**) = R (**a** \times **b**)$

∍

b

4 何 ト 4 三 ト 4 三 トー

Coordinate Transformation

- A.k.a. rigid transformation
- First translate, then rotate: $1\mathbf{p} = R_1(\mathbf{p} \mathbf{t}_1)$
- Inverse: $\mathbf{p} = R_1^T$ ¹ $\mathbf{p} + \mathbf{t}_1$
- Generally, if ${}^b\mathbf{p} = {}^a\!R_b({}^a\mathbf{p} {}^a\mathbf{t}_b)$ then ${}^a\mathbf{p} = {}^b\!R_a({}^b\mathbf{p} {}^b\mathbf{t}_a)$ where ${}^b\!R_a = {}^a\!R_b^T$ and ${}^b\mathbf{t}_a = - {}^a\!R_b{}^a\mathbf{t}_b$

The Pinhole Camera

重

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ …

Putting the Image Plane in Front?

÷.

イロト イ母 トイラ トイラト

In Math, We Can

- *Camera reference system* (*X*, *Y*, *Z*) is right-handed, *Z* toward scene
- Distance btw center of projection and principal point: *focal distance f*
- *Canonical image reference system* (*x*, *y*) has origin at principal point
- *Pixel image reference system* (ξ, η) has origin at top left of sensor

•
$$
\xi = s_x x + \xi_0
$$
 and $\eta = s_y y + \eta_0$ $(s_x, s_y \text{ in pixels/mm})$

The Projection Equations

÷.