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The Epipolar Geometry of a Pair of Cameras

The Epipolar Geometry of a Pair of Cameras
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The Epipolar Geometry of a Pair of Cameras

The Epipolar Constraint
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• The point pa in image a that corresponds to point pb in
image b is on the epipolar line of pb

... and vice versa
• This is the only general constraint between two images of

the same scene; 3D reconstruction depends on it
• Epipolar lines come in corresponding pairs
• Two pencils of lines supported by the two epipoles
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The Epipolar Geometry of a Pair of Cameras

Another Way to State the Epipolar Constraint
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The two projection rays and the baseline are coplanar for
corresponding points
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The Epipolar Geometry of a Pair of Cameras

The Epipolar Constraint and 3D Reconstruction

• Relative position and orientation of the two cameras are
unknown

• Given corresponding points apa, bpb (found, say, by
tracking) we can write one algebraic constraint on aRb and
atb

• With enough pairs of corresponding points, we can write a
system of equations in aRb and atb and solve it

• We can then solve for the coordinates of the 3D points
whose images we have

• Solving the system is 3D reconstruction
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The Essential Matrix

The Essential Matrix

• How to write the epipolar constraint algebraically?
• The constraint is nonlinear in aRb, atb

• Introduce a new 3 × 3 essential matrix E that combines
rotation and translation to make motion estimation a linear
problem in E

• Computation sequence:
• Find E by solving a homogeneous linear system
• Find rotation and translation from E
• Find structure (3D points in the world) by intersecting

projection rays
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The Essential Matrix

Coordinates
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• (Known) image points as world points:

apa =

 axa
aya

f

 and bpb =

 bxb
byb

f


• Each camera measures a point in its own reference system
• (Unknown) transformation: bp = aRb(

ap − atb)

• Inverse: aRT
b

bpb +
atb
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The Essential Matrix

Writing all Quantities in System a
• Pose of camera b in a is specified by aRb, atb, both in a
• Image point apa is in a
• Image point bpb is in b, need to transform to apb
• Invert bpb = aRb(

apb − atb) to obtain apb = aRT
b

bpb +
atb

• Too many super/subscripts to keep track of. Define
a = apa , b = bpb , R = aRb , t = atb , e = aeb

• ab def
= apb = RT b + t
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The Essential Matrix

Aside: Epipole and Translation
• The epipole of b in a is the same as t up to norm
• Define: e = aeb

• e ∝ t
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The Essential Matrix

The Epipolar Constraint, Algebraically
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R, t ab = RT b + t

• The two projection rays and the baseline are coplanar
• The triple product of ab, t, and a is zero: abT (t × a) = 0
(RT b + t)T (t × a) = 0, but tT (t × a) = 0 so that
(RT b)T (t × a) = 0
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The Essential Matrix

The Essential Matrix
(RT b)T (t × a) = 0
bT R (t × a) = 0
bT R [t]×a = 0

where t = (tx , ty , tz)T and [t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0


bT E a = 0 where E = R [t]×

• This equation is the epipolar constraint, written in algebra
• Holds for any corresponding a, b in the two images (as

world vectors in their reference systems)
• E is the essential matrix
• The epipolar constraint is linear in E but not in R and t
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The Essential Matrix

The Epipolar Line in Image a
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• Think of b as fixed
• What points x in image a

satisfy the epipolar constraint?
bT E x = 0

• Let λT = bT E , a row vector
• λT x = 0, a line!
• a satisfies this homogeneous equation (epipolar constraint)
• So does t: λT t = bT Et = bT R [t]× t = 0
. . . and therefore e

• So the line is the epipolar line of b
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The Essential Matrix

Two Key Problems

• How to find E given many pairs of corresponding points
• Easy because bT E a = 0 is linear and homogeneous in E
• Let us postpone the details

• How to break up E into R and t
• A bit trickier because E = R [t]× is nonlinear in R and t
• Let us do this first
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The Essential Matrix

The Structure of E = R [t]×: Rank and Null Space
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• E has rank 2 and null(E) = span(t) = span(e)
• Geometry:

• The epipole e is in the epipolar line bT Ex = 0 for every b
• Therefore, bT Ee = 0 for all b
• Therefore Ee = 0, so e ∈ null(E)

• Algebra:
[t]×t = t × t = 0
t × v ̸= 0 if v is not parallel to t

• Therefore, the rank of [t]× is 2 for t ̸= 0
• Since R is full rank, the solutions of [t]×x = 0 and Ex = 0

(i.e., R[t]×x = 0) are the same
• Therefore, rank(E) = 2 for nonzero t and null(E) = span(t)

• Either way, null(E) = span(e) = span(t) = baseline
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The Essential Matrix

The Structure of E : Singular Values
• E has two equal singular values and one zero singular value
• Proof

• Let v be perpendicular to t.
Then ∥[t]×v∥ = ∥t∥ ∥v∥
(geometric definition of cross product)

• Let ∥v∥ = 1. Then ∥[t]×v∥ = ∥t∥
• v ⊥ t means that v ∈ row space([t]×)

because null(E) = span(t)
• Therefore, all unit-norm vectors

v ∈ row space([t]×) are mapped to a circle
• Therefore [t]× has two equal singular values
• Third is zero because t ∈ null([t]×)
• Ditto for E , since E = R[t]× and R is orthogonal
• Therefore v3 ∝ e ∝ t and σ1 = σ2 = σ

• If we have E , we can find camera translation t by SVD!
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The Essential Matrix

A Fundamental Ambiguity

• The equation bT E a = 0 is homogeneous in E
• Therefore, we cannot tell the magnitude of E ,

or of t in E = R [t]×
• Absolute scale cannot be determined from images alone
• This ambiguity is general, has nothing to do with the

specifics of the formulation
• Cameras fundamentally measure angles, not distances
• This ambiguity is often exploited in movie special effects
• W.l.o.g., let ∥t∥ = 1
• Measure everything in units of inter-camera distance
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The Essential Matrix

How to Find E?

bT E a = 0

• Given pairs (a1,b1), . . . (an,bn)

• Write one epipolar constraint equation per pair
• Linear and homogeneous in E
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The Eight-Point Algorithm: t, R

The Eight-Point Algorithm

• H. C. Longuet-Higgins, Nature, 293:133–135, 1981
• Needs at least 8 corresponding point pairs
• Preferably many more
• Overview:

• Given pairs (a1,b1), . . . (an,bn) (tracking)
• Write one epipolar constraint equation bT

m E am = 0 per pair
• Solve linear system bT

1 E a1 = 0, . . . , bT
n E an = 0 for E

• Solve E = R [t]× for t, R
• Compute the 3D structure (points Pm) from am, bm, t, R

• The last step is called triangulation

COMPSCI 527 — Computer Vision 3D Reconstruction 19 / 28



The Eight-Point Algorithm: t, R

Rewriting the Epipolar Constraint
bT E a = 0[

b1 b2 b3
]  e11 e12 e13

e21 e22 e23
e31 e32 e33

 a1
a2
a3

 = 0

e11a1b1 + e12a2b1 + e13a3b1+
e21a1b2 + e22a2b2 + e23a3b2+

e31a1b3 + e32a2b3 + e33a3b3 = 0

[
a1b1 a2b1 a3b1 a1b2 a2b2 a3b2 a1b3 a2b3 a3b3

]


e11
e12
e13
e21
e22
e23
e31
e32
e33


= 0

cTη = 0

• With n point pairs, cT
mη = 0 for m = 1, . . . ,n
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The Eight-Point Algorithm: t, R

Solving for E
cT

mη = 0 for m = 1, . . . ,n
Cη = 0 where C is n × 9

• Because of the scale ambiguity, we cannot tell the norm of η
• Set ∥η∥ = 1
• Homogeneous, least squares problem on the unit sphere
• We know how to solve that!

• Repackage η into 3 × 3 matrix E
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The Eight-Point Algorithm: t, R

Solving for t
• We have E now

E = R [t]×
• We saw that null(E) = span(t)
• So we know how to find t with ∥t∥ = 1, up to a sign
• ±t (and also ±[t]×)
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The Eight-Point Algorithm: t, R

Solving for R

• We have both E and T = ±[t]×
E = R [t]×

• Linear system in R, but with the constraints RT R = I and
det(R) = 1

• Linear, constrained LSE optimization problem:
The Procrustes problem, argminRT R=I ∥E − RT∥F

• Appendix in the notes gives a solution based on the SVD
• Since T has rank 2, it turns out that the there are two

solutions, R1 and R2 for each choice of sign in T = ±[t]×
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The Eight-Point Algorithm: t, R

Eight-Point Algorithm So Far

• Given n ≥ 8 image point pairs (am,bm) for m = 1, . . . ,n
• Solve n × 9 linear homogeneous system bT

m E am = 0 for E
• Compute ±t as the third right singular vector of ±E
• Solve ±E = R ± [t]× for R by Procrustes (linear problem

with orthogonality constraint) to obtain R1, R2

• We obtain two translations ±t and two rotations R1,R2

• Four combinations: (t,R1) , (−t,R1) , (−t,R2) , (t,R2)

• Which is the right one?
• Let us first triangulate: Reconstruct the world points given

one solution (t,R)

• Only one of the four sets of world points will make sense
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Triangulation: Pm

Triangulation

• For simplicity, divide a′ =

 a′
1

a′
2
f

 by f so that now a =

 a1
a2
1


• Let α def

=

[
a1
a2

]
(coordinates in canonical image reference system)

• Ditto for b, β

• Projection equations in each camera reference frame: A is P in frame a

α = 1
A3

[
A1
A2

]
and β = 1

B3

[
B1
B2

]
• Rewrite as αA3 =

[
A1
A2

]
and βB3 =

[
B1
B2

]
Plug B = R(A − t) into second set of equations

• All equations are linear. Four equations, 3 unknowns

• Solve in the LSE sense, get a modicum of noise rejection
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Triangulation: Pm

The Fourfold Ambiguity
(t,R1) , (−t,R1) , (−t,R2) , (t,R2)

P

XC

ZC

C

XD

ZD

D

P

XC

ZC

C XD’

ZD’

D’

XD

ZD

D XC

ZC

C

P

XC

ZC

CXD’

ZD’

D’

P

• Only one solution places all world points in front of both cameras
• Try all four solutions, and reconstruct world points by triangulation
• Pick the one solution that makes sense
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Bundle Adjustment

Summary of Eight-Point Algorithm
• Given n ≥ 8 image point pairs (am,bm) for m = 1, . . . ,n
• Solve n × 9 linear homogeneous system bT

m E am = 0 for E
• Compute ±t as the third right singular vector of ±E
• Solve ±E = R ± [t]× for R by Procrustes (linear problem

with orthogonality constraint) to obtain R1, R2

• Triangulate scene points Pm from am, bm, t, R and for all
four combinations of t and R
(n separate problems, one per point pair)

• Choose the one combination of t, R that places world points
in front of both cameras

• Keep the corresponding triangulated scene points Pm

• Everything is found up to a single, global scale factor
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Bundle Adjustment

Bundle Adjustment
• Let π be the perspective projection function. We are after

arg min
t,R,A1,...,An

1
2n

n∑
m=1

[
∥am − π(Am)∥2 + ∥bm − π(R(Am − t))∥2]︸ ︷︷ ︸

reprojection error

arg min
t,R,A1,...,An

ρ(t,R,A1, . . . ,An)

• Eight-point algorithm solves this single optimization problem
in multiple steps

• This greedy approach leads to a suboptimal solution
• Use solution t,R,P1, . . . ,Pn from 8-point algorithm to

initialize a gradient-descent search for an optimal solution to
the full problem

• This fine-tuning step is called bundle adjustment
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