Real Cameras and their Calibration

COMPSCI 527 — Computer Vision

重

イロト イ母 トイヨ トイヨ トー

Outline

1 [Real Cameras](#page-2-0) [Depth of Field](#page-3-0) **[Distortion](#page-5-0)**

² [Camera Calibration](#page-7-0) [A Camera Model](#page-9-0) [Parameter Optimization](#page-12-0) [Lab Setup and Imaging](#page-13-0)

Ε

4 0 8

母 トイヨ ト

Depth of Field

- Focal *length*: focal *distance* when an object at ∞ is in focus
- Focal length is a lens property
- Focal distance can be changed by rotating the focusing ring
- Nothing to do with *zoom*, which changes focal length
- •A[l](#page-7-0)as, *f* is often used for either focal di[sta](#page-1-0)[n](#page-3-0)[c](#page-3-0)[e](#page-2-0) [o](#page-3-0)[r](#page-1-0) [fo](#page-2-0)c[al](#page-2-0) l[en](#page-0-0)[gth](#page-16-0)

Changing Depth of Field

- *Aperture*: diameter of the hole in front of the lens
- Measured in *stops*, or *f-numbers* $n = \frac{1}{6}$ *a* (*a* is aperture diameter, *f* is focal length)
- Area (light flux) is proportional to *square* of diameter
- Small aperture (big *f*-number) ⇒ great depth of field
- A shallow depth of field is sometimes desirable

 \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B}

Depth of Field and Exposure

<http://www.boostyourphotography.com/2014/10/depth-of-field.html>

メロメメ 御 メメ 差 メメ 差 メ

Lens Distortion

pincushion [b](#page-5-0)[a](#page-6-0)[r](#page-5-0)r[e](#page-6-0)[l](#page-7-0)

重

\leftarrow distortion

not distortion:

85mm @ 200cm

35mm @ 85cm

16mm @ 40cm

12mm @ 30cm

8mm @ 20cm

 \triangleright \rightarrow \equiv \rightarrow

COMPSCI 527 — Computer Vision [Real Cameras and their Calibration](#page-0-0) 1999 Real Cameras and their Calibration 1999

Þ

Camera Calibration

- Cameras have *intrinsic parameters*: focal distance, pixel size, principal point, lens distortion parameters
- ... and *extrinsic parameters*: Rotation, translation relative to some world reference system
- *Camera calibration* is a combination of lab measurements and algorithms aimed at determining both types of parameters
- We do not calibrate for finite depth of field (stop down the aperture, flood the scene with light)

イ何 トイヨ トイヨ トー

Calibration as Learning

- Many variants, the general idea is the same
- Looks very much like machine learning:
	- **1** Make a parametric model of what a camera does: Inputs are world points **W** in world coordinates, outputs are image points ξ in image pixel coordinates ("predictor architecture")
	- **2** Collect a sufficiently large set T of input-output pairs (**W***n*, ξ*ⁿ*) ("training set")
	- $\mathbf{\hat{s}}$ "Loss function" measures discrepancy between $\hat{\boldsymbol{\xi}}_n$ predicted by model and ξ_n measured in image
	- **4** Fit the parameters to *T* by numerical optimization ("training")
- We even have generalization requirements: The parameters should be correct for pairs (**W**, ξ) not in *T*
- We already know how to do 3, 4. Need to figure out 1, 2.

イロト イ押 トイラト イラトー

Camera Model

$$
\mathbf{X} = R(\mathbf{W} - \mathbf{t})
$$
\n
$$
\mathbf{x} = p(\mathbf{X}) = \frac{1}{X_3} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}
$$
\n
$$
\mathbf{y} = d(\mathbf{x}) \quad \text{(lens distortion)}
$$
\n
$$
\boldsymbol{\xi} = S\mathbf{y} + \boldsymbol{\pi}
$$
\n
$$
S = f \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}
$$
\nCan only determine products $f s_x$ and $f s_y$, not f, s_x, s_y individually

メロメメ 御き メモメメモメー

重

Lens Distortion Model

• Distortion is radial around the principal point:

イロト イ母 トイヨ トイヨ トーヨー

- $\mathbf{y} = d(\mathbf{x}) = \delta(r) \mathbf{x}$ where $r = ||\mathbf{x}||$ • *Radial distortion function* δ(·) is nonlinear
- Must be analytical everywhere (Maxwell). Implication:
	- Restrict to *x* axis: $\delta(r(\mathbf{x})) = \delta(|x|)$
	- Odd powers of $|x|$ have a cusp at the origin
	- Therefore, $\delta(r) = 1 + k_1 r^2 + k_2 r^4 + ...$ $(k_0 \neq 1$ can be folded into f)
- Large powers of *r* only affect peripheral areas and cannot be determined well
- Typically, $\delta(r) = 1 + k_1 r^2 + k_2 r^4$

Camera Parameters

$$
X = R(W - t)
$$

\n
$$
x = p(X) = \frac{1}{X_3} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}
$$

\n
$$
y = x (1 + k_1 ||x||^2 + k_2 ||x||^4)
$$

\n
$$
\xi = Sy + \pi
$$

- Extrinsic parameters: *R*, **t** (6 degrees of freedom)
- Intrinsic parameters: π , $f s_x$, $f s_y$, k_1 , k_2 (6 numbers) $\boldsymbol{\xi} = \mathbf{c}(\mathbf{W}; \mathbf{p})$ where $\mathbf{p} \in \mathbb{R}^{12}$

重

イロメ イ母 トイラ トイラメー

Data Fitting

- Collect input-output pairs $(\mathbf{W}_n, \boldsymbol{\xi}_n)$ for $n = 1, \ldots, N$ $\hat{\boldsymbol{\xi}} = \mathbf{c}(\mathbf{W};\mathbf{p})$ where $\mathbf{p} \in \mathbb{R}^{12}$ $\mathbf{p}^* = \arg \min_{\mathbf{p}} e(\mathbf{p})$ where $e(\mathbf{p}) = \frac{1}{N} \sum_{n=1}^N ||\boldsymbol{\xi}_n - \mathbf{c}(\mathbf{W}_n; \mathbf{p})||^2$
- *e* is nonlinear
- To initialize: clamp $k_1 = k_2 = 0$, solve a linear system
- Approximate because of clamping *and* because the residual is different from *e*(**p**)
- Use any optimization algorithm to refine

G.

イロト イ押 トイラ トイラト

Calibration Target

<http://www.mdpi.com/1424-8220/9/6/4572/htm> Duke Computer Vision Lab

÷.

Circles are Problematic

メロメメ 御きメ モトメ モチ

÷.

Calibration Protocol Summary

- Place calibration target in front of camera (fill the image)
- Measure image coordinates (with software help?)
- Make a file with (**W***n*, ξ*ⁿ*) pairs
- Fit parameters by numerical optimization
- Redo if you touch the lens or the camera!

An Example for Distortion Only

4. 0. 6.

 \sqrt{m} \rightarrow \sqrt{m} \rightarrow \sqrt{m}

Ė

B