

Interpretable Causal Inference for High-Stakes Decisions

Harsh Parikh

Dept. of Computer Science Duke University

Bills' Damar Hamlin in critical condition after collapse on field

Nation Jan 3, 2023 9:18 AM EST

Treating Patients in ICU

- Which drugs to use?
- When to administer these drugs?
- What should be the drug dose?

Treating Patients in ICU

- Which drugs to use?
- When to administer these drugs?
- What should be the drug dose?

Doctors need to understand the **risk-reward trade-offs**!

Understanding risk-reward trade-offs

⇒ Understanding **causal dependencies**

- How bad are seizures for brain?
- How effective are anti-seizure medications (ASMs)?

How Bad are Seizures for Brain? (Results from the Literature)

Seizure Burden

- 1. Payne *et al*, 2014
- 2. De Marchis et al, 2016
- 3. Zafar *et al*, 2018

How Bad are Seizures for Brain? (Our Analysis)

How Bad are Seizures for Brain? (Heterogeneity)

How Effective are ASMs in Reducing Seizure Burden?

Parameters of Interest

- **ED50:** Dose required to reduce Sz burden by 50%
- α: binding between the receptor and the ligand (Hill's coefficient)

Results: How Effective are ASMs in Reducing Seizure Burden?

	Parameter Description	Levetiracetam	Propofol
Туре		Non Sedating	Sedating
Avg. ED50	Dose required to reduce Seizure burden by 50%	5.57 mg/kg	1.88 mg/kg
Avg. α	Binding between the receptor and the ligand (Hill's coefficient)	1.168	2.34

Results: What are Long-term Negative Effects of ASMs?

- Intense burst of seizures even for a short-period can lead to poor outcome
 - Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure bursts

- Intense burst of seizures even for a short-period can lead to poor outcome
 - Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure bursts
- Patients with asphyxia and CNS infection are adversely affected by seizures
 - Prioritize aggressive treatment for patients with these diagnosis

- Intense burst of seizures even for a short-period can lead to poor outcome
 - Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure bursts
- Patients with asphyxia and CNS infection are adversely affected by seizures
 - Prioritize aggressive treatment for patients with these diagnosis
- Primary seizure management using levetiracetam
 - Use of propofol limited only to control seizure bursts

- Intense burst of seizures even for a short-period can lead to poor outcome
 - Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure bursts
- Patients with asphyxia and CNS infection are adversely affected by seizures
 - Prioritize aggressive treatment for patients with these diagnosis
- Primary seizure management using levetiracetam
 - Use of propofol limited only to control seizure bursts
- Multi-center observational and experimental studies to understand effect heterogeneity across patients and ensure generalizability

Causal Methods for Complex Data

	Seizure=0	Seizure=1
Potential Outcomes	Y _i (O)	Y _i (1)

Causal Effect of Seizures = $Y_i(1) - Y_i(0)$

Confounding

Pharmacology and Entangled Exposures

 $E_t \sim f(E_{0:t-1}, D_t, X, \pi)$

 $D_t \sim g(W_{0:t},eta)$

Pharmacology and Entangled Exposures

Pharmacology and Entangled Exposures

$$E_{i,t} = 1 - \sum_{j} \frac{D_{i,t,j}^{\alpha_{i,j}}}{D_{i,t,j}^{\alpha_{i,j}} + E D_{50,i,j}^{\alpha_{i,j}}}$$
$$\pi_i = \{E D_{50,i,j}; \alpha_{i,j}\}_j$$

$$\frac{dD_{i,t,j}}{dt} = -\frac{1}{\beta_j}D_{i,t,j} + W_{i,t,j}$$

$$E_{i,t} = 1 - \sum_{j} \frac{D_{i,t,j}^{\alpha_{i,j}}}{D_{i,t,j}^{\alpha_{i,j}} + E D_{50,i,j}^{\alpha_{i,j}}}$$
$$\pi_i = \{E D_{50,i,j}; \alpha_{i,j}\}_j$$

$$\frac{dD_{i,t,j}}{dt} = -\frac{1}{\beta_j}D_{i,t,j} + W_{i,t,j}$$

$$E_{i,t} = 1 - \sum_{j} \frac{D_{i,t,j}^{\alpha_{i,j}}}{D_{i,t,j}^{\alpha_{i,j}} + E D_{50,i,j}^{\alpha_{i,j}}}$$
$$\pi_i = \{E D_{50,i,j}; \alpha_{i,j}\}_j$$

Pharmacodynamics

Why Matching?

- Conceptual simplicity (comparing like with like) [RR, 1983]
- Adjustments are an interpolation (unlike regression) [Imbens 2015]
- Covariate based matching methods are interpretable [WMALRRV, 2018]
- Facilitates sensitivity analysis to biases due to unobserved confounding [Rosenbaum 1987]

Drug Dose Drug Concentration B Pharmacokinetics

Challenges with Matching: Toenail Problem

Name	ASM	Death (Y)	Hx Epilepsy (X1)	Toenail-Length (X2)
Jim	1	0	1	0.2 inch
Joe	0	0	0	0.1 inch
Jill	0	1	1	1 inch

Challenges with Matching: Toenail Problem

	Name	ASM	Death (Y)	Hx Epilepsy (X1)	Toenail-Length (X2)
-	Jim	1	0	1	0.2 inch
-	Joe	0	0	0	0.1 inch
	Jill	0	1	1	1 inch

Challenges with Matching: Toenail Problem

	Name	ASM	Death (Y)	Hx Epilepsy (X1)	Toenail-Length (X2)
~	Jim	1	0	1	0.2 inch
	Joe	0	0	0	0.1 inch
~	Jill	0	1	1	1 inch

MALTS: Matching After Learning to Stretch (Interpretable-and-Accurate Estimation Framework)

H Parikh, C Rudin, A Volfovsky - Journal of Machine Learning Research, 2022

Data (D)

Estimated potential outcome for treatment t'
$$\hat{Y}_{\mathbf{x}_i}^{(t')} = \phi\left(\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K)\right)$$

where,

$$\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K) = KNN_{\mathcal{M}}^{\mathcal{S}_n}(\mathbf{x}_i, t') := \left\{ s_k : \left[\sum_{s_l \in \mathcal{S}_n^{(t')}} \mathbb{1}\left(\mathbf{d}_{\mathcal{M}}(\mathbf{x}_l, \mathbf{x}_i) < \mathbf{d}_{\mathcal{M}}(\mathbf{x}_k, \mathbf{x}_i) \right) \right] < K \right\} \quad \begin{bmatrix} \mathsf{K} \\ \mathsf{w} \end{bmatrix}$$

K Nearest Neighbors with treatment t'

Estimation Query Unit

where,

$$\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K) = KNN_{\mathcal{M}}^{\mathcal{S}_n}(\mathbf{x}_i, t') := \left\{ s_k : \left[\sum_{s_l \in \mathcal{S}_n^{(t')}} \mathbb{1}\left(\mathbf{d}_{\mathcal{M}}(\mathbf{x}_l, \mathbf{x}_i) < \mathbf{d}_{\mathcal{M}}(\mathbf{x}_k, \mathbf{x}_i) \right) \right] < K \right\} \quad \begin{bmatrix} \mathsf{K} \\ \mathsf{w} \end{bmatrix}$$

K Nearest Neighbors with treatment t'

where,

$$\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K) = KNN_{\mathcal{M}}^{\mathcal{S}_n}(\mathbf{x}_i, t') := \left\{ s_k : \left[\sum_{s_l \in \mathcal{S}_n^{(t')}} \mathbb{1}\left(\mathbf{d}_{\mathcal{M}}(\mathbf{x}_l, \mathbf{x}_i) < \mathbf{d}_{\mathcal{M}}(\mathbf{x}_k, \mathbf{x}_i) \right) \right] < K \right\} \quad \begin{bmatrix} \mathsf{K} \\ \mathsf{w} \end{bmatrix}$$

K Nearest Neighbors with treatment t'

where,

$$\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K) = KNN_{\mathcal{M}}^{\mathcal{S}_n}(\mathbf{x}_i, t') := \left\{ s_k : \left[\sum_{s_l \in \mathcal{S}_n^{(t')}} \mathbb{1}\left(\mathbf{d}_{\mathcal{M}}(\mathbf{x}_l, \mathbf{x}_i) < \mathbf{d}_{\mathcal{M}}(\mathbf{x}_k, \mathbf{x}_i) \right) \right] < K \right\} \quad \left|$$

K Nearest Neighbors with treatment t'

where,

$$\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K) = KNN_{\mathcal{M}}^{\mathcal{S}_n}(\mathbf{x}_i, t') := \left\{ s_k : \left[\sum_{s_l \in \mathcal{S}_n^{(t')}} \mathbb{1}\left(\mathbf{d}_{\mathcal{M}}(\mathbf{x}_l, \mathbf{x}_i) < \mathbf{d}_{\mathcal{M}}(\mathbf{x}_k, \mathbf{x}_i) \right) \right] < K \right\}$$

K Nearest Neighbors with treatment t'

Estimated potential outcome for treatment t'
$$\hat{Y}_{\mathbf{x}_i}^{(t')} = \phi\left(\mathrm{MG}(s_i, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_n^{(t')}, K)\right)$$

$$\mathbf{d}_{\mathcal{M}}(a,b) = d_{\mathcal{M}_c}(a_c,b_c) + d_{\mathcal{M}_d}(a_d,b_d)$$

Continuous part

$$d_{\mathcal{M}_c}(a_c,b_c) = \|\mathcal{M}_c a_c - \mathcal{M}_c b_c\|_2$$

Discrete part

$$d_{\mathcal{M}_d}(a_d,b_d) = \sum_{j=0}^{|a_d|} \mathcal{M}_d^{(j,j)} \mathbb{1}[a_d^{(j)} \neq b_d^{(j)}]$$

Stretched Euclidean Norm

Training

0.0

Training

$$\hat{Y}_{\mathbf{x}_{i}}^{(t')} = \phi\left(\mathrm{MG}(s_{i}, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_{n}^{(t')}, K)\right)$$

Find a distance metric d_M that *minimizes* the discrepancy between the *estimated* and the *true* treatment effect:

$$\min_{\mathcal{M}} \frac{1}{n} \sum_{i=1}^{n} \ell(\widehat{Y}_{\mathbf{x}_{i}}^{(T)} - \widehat{Y}_{\mathbf{x}_{i}}^{(C)}, \underbrace{Y_{i}^{(T)} - Y_{i}^{(C)}}_{\mathsf{True}})$$

$$\underbrace{\mathsf{Estimated}}_{\mathsf{Treatment}} \underbrace{\mathsf{Effect}}_{\mathsf{Treatment}} \mathsf{True}_{\mathsf{Treatment}} \mathsf{Effect}$$

Training

$$\hat{Y}_{\mathbf{x}_{i}}^{(t')} = \phi\left(\mathrm{MG}(s_{i}, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_{n}^{(t')}, K)\right)$$

Find a distance metric d_M that *minimizes* the discrepancy between the *estimated* and the *true* treatment effect:

$$\min_{\mathcal{M}} rac{1}{n} \sum_{i=1}^n \ell(\widehat{{Y}}_{\mathbf{x}_i}^{(T)} - \widehat{{Y}}_{\mathbf{x}_i}^{(C)}, Y_i^{(T)} - Y_i^{(C)})$$

However, this loss *cannot* be evaluated because we observe only one of the potential outcomes.

0.0

Training

$$\hat{Y}_{\mathbf{x}_{i}}^{(t')} = \phi\left(\mathrm{MG}(s_{i}, \mathbf{d}_{\mathcal{M}}, \mathcal{S}_{n}^{(t')}, K)\right)$$

Find a distance metric d_M that *minimizes* the discrepancy between the *estimated* and the *true* treatment effect:

$$\min_{\mathcal{M}} rac{1}{n} \sum_{i=1}^n \ell(\widehat{{Y}}_{\mathbf{x}_i}^{(T)} - \widehat{{Y}}_{\mathbf{x}_i}^{(C)}, Y_i^{(T)} - Y_i^{(C)})$$

However, this loss *cannot* be evaluated because we observe only one of the potential outcomes.

Surrogate Objective $\min_{\mathcal{M}} rac{1}{n} \sum_{i=1}^n t_i \ell(\widehat{Y}_{\mathbf{x}_i}^{(T)}, y_i) + (1-t_i)\ell(\widehat{Y}_{\mathbf{x}_i}^{(C)}, y_i)$

Training

$$\mathcal{M}(\mathcal{S}_{tr}) \in \operatorname*{arg\,min}_{\mathcal{M}} \left(c \|\mathcal{M}\|_{\mathcal{F}} + \Delta^{(C)}_{\mathcal{S}_{tr}}(\mathcal{M}) + \Delta^{(T)}_{\mathcal{S}_{tr}}(\mathcal{M}) \right)$$

$$\Delta_{\mathcal{S}_{tr}}^{(t)}(\mathcal{M}) := \frac{1}{|\mathcal{S}_{tr}^{(t)}|} \sum_{s_i \in \mathcal{S}_{tr}^{(t)}} \left| y_i - \sum_{s_l \in \mathcal{S}_{tr}^{(t)}} \frac{e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_l)}}{\sum_{s_k \in \mathcal{S}_{tr}^{(t)}} e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_k)}} y_l \right|$$

Training

$$\Delta_{\mathcal{S}_{tr}}^{(t)}(\mathcal{M}) := \frac{1}{|\mathcal{S}_{tr}^{(t)}|} \sum_{s_i \in \mathcal{S}_{tr}^{(t)}} \left| y_i - \sum_{s_l \in \mathcal{S}_{tr}^{(t)}} \frac{e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_l)}}{\sum_{s_k \in \mathcal{S}_{tr}^{(t)}} e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_k)}} y_l \right|$$
Training

$$\mathcal{M}(\mathcal{S}_{tr}) \in \operatorname*{arg\,min}_{\mathcal{M}} \left(c \|\mathcal{M}\|_{\mathcal{F}} + \Delta^{(C)}_{\mathcal{S}_{tr}}(\mathcal{M}) + \Delta^{(T)}_{\mathcal{S}_{tr}}(\mathcal{M})
ight)$$

Weighted Nearest Neighbors Estimate

$$\Delta_{\mathcal{S}_{tr}}^{(t)}(\mathcal{M}) := \frac{1}{|\mathcal{S}_{tr}^{(t)}|} \sum_{s_i \in \mathcal{S}_{tr}^{(t)}} \left| y_i - \sum_{s_l \in \mathcal{S}_{tr}^{(t)}} \frac{e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_l)}}{\sum_{s_k \in \mathcal{S}_{tr}^{(t)}} e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_k)}} y_l \right|$$
$$\ell(\widehat{Y}_{\mathbf{x}_i}^{(t)}, y_i)$$

Review: MALTS Framework

Experiments

Experiment 1: MALTS has **accuracy** on par with black box models

- Continuous and discrete covariates
- Highly non-linear process

Experiment 2: MALTS is end-to-end **interpretable**

• Compare matched groups across different matching methods

Experiments

Experiment 1: MALTS has accuracy on-par with black box models

- Continuous and discrete covariates
- Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

• Compare matched groups across different matching methods

MALTS is consistently accurate as the *dimensionality* increases.

MALTS is consistently accurate as the *sample size* increases.

Friedman's Data Generation Process

••

Friedman's Data Generation Process

MALTS is on-par with black-box approaches even for highly non-linear data generation process.

Experiments

Experiment 1: MALTS has **accuracy** on par with black box models

- Continuous and discrete covariates
- Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

• Compare matched groups across different matching methods

Lalonde Experimental & Observational Study

	ATE Estimate
\mathbf{Method}	
Truth	886

Lalonde Experimental & Observational Study

	ATE Estimate
\mathbf{Method}	
Truth	886
GenMatch	549.53
Propensity Score	513.79
Prognostic Score	-897.76
BART-CV	713.20
Causal Forest-CV	-179.98

Lalonde Experimental & Observational Study

	ATE Estimate
\mathbf{Method}	
Truth	886
GenMatch	549.53
Propensity Score	513.79
Prognostic Score	-897.76
BART-CV	713.20
Causal Forest-CV	-179.98
$MALTS \ (pruned)$	891.75

00

Lalonde Matched Groups

	Treatment				Cova	ariates			Outcome
Unit ID	Treated	Age	Education	Black	Hispanic	Married	No-Degree	Income-1975	Income-1978
Query: 1	Yes	22	9	No	Yes	No	Yes	\$0	\$3596

••

Lalonde Matched Groups

	Treatment				Cova	riates			Outcome
Unit ID	Treated	Age	Education	Black	Hispanic	Married	No-Degree	Income-1975	Income-1978
Query: 1	Yes	22	9	No	Yes	No	Yes	\$0	\$3596
					Prognostic	Scores			
338	No	44	9	Yes	No	No	Yes	\$0	\$9722
340	No	22	12	Yes	No	No	No	\$532	\$1333
355	No	18	10	No	Yes	No	Yes	\$0	\$1859
					Propensity	Scores			·
451	No	22	8	Yes	No	No	Yes	\$0	\$1391
330	No	22	8	No	Yes	No	Yes	\$0	\$9921
407	No	20	12	Yes	No	No	No	\$1371	\$20893

••

Lalonde Matched Groups

	Treatment				Cova	riates			Outcome
Unit ID	Treated	Age	Education	Black	Hispanic	Married	No-Degree	Income-1975	Income-1978
Query: 1	Yes	22	9	No	Yes	No	Yes	\$0	\$3596
		÷			Prognostic	Scores			
338	No	44	9	Yes	No	No	Yes	\$0	\$9722
340	No	22	12	Yes	No	No	No	\$532	\$1333
355	No	18	10	No	Yes	No	Yes	\$0	\$1859
					Propensity	Scores			
451	No	22	8	Yes	No	No	Yes	\$0	\$1391
330	No	22	8	No	Yes	No	Yes	\$0	\$9921
407	No	20	12	Yes	No	No	No	\$1371	\$20893
				Ou	r Approach	(MALTS))		
330	No	22	8	No	Yes	No	Yes	\$0	\$9921
299	No	22	9	Yes	No	No	Yes	\$0	\$0
416	No	22	9	Yes	No	No	Yes	\$0	\$12898

Theoretical Guarantees

Theorem 1. (Consistency) Given a smooth distance metric, a K-nearest neighbors estimate of treatment effect *estimates* are accurate.

• Estimated treatment effect is consistent with the true treatment effect

Theorem 2. (Generalizability) MALTS *learned* distance metric is generalizable

• For the *learned distance metric*, the empirical loss on the training set is not far from population loss (with high probability)

Review: MALTS Framework

Smoothing: Repeat **a** times

Back to

Seizures in ICU Patients Understanding the Matched Groups

Learned Distance Metric

Learned Distance Metric

Learned Distance Metric

Auditability: It's a Tight Match!

Age / Gender	59 / F	Age
APACHE-II (Prognosis)	8	AP/ (Pro
Major Medical Hx	Subarachnoid Hemorrhage	Maj
Rx Hill's Response (Levetiracetam)	1.26	Rx (Le
Doctor's Notes	Traumatic brain Injury. Prior witnessed episodes of seizure; admitted after	Doc Not

Age / Gender	62 / F
APACHE-II (Prognosis)	7
Major Medical Hx	Subarachnoid Hemorrhage
Rx Hill's Response (Levetiracetam)	1.23
Doctor's Notes	Complicated neurological history: diagnosed with aseptic meningitis. Admitted after she was found unresponsive.

Comparing Patients within a Matched Group

Auditability: More than just Numbers!

Age / Gender	<mark>64</mark> / F	
APACHE-II (Prognosis)	3	
Major Medical Hx	Brain Tumor	
Rx Hill's Response (Levetiracetam)	1.22	

Age / Gender	<mark>28</mark> / F
APACHE-II (Prognosis)	3
Major Medical Hx	Severe Pneumonia
Rx Hill's Response (Levetiracetam)	1.20

Comparing Patients within a Matched Group

Age / Gender	<mark>64</mark> / F
APACHE-II (Prognosis)	3
Major Medical Hx	<mark>Brain Tumor</mark>
Rx Hill's Response (Levetiracetam)	1.22
Doctor's Notes	Brain tumor has grown larger and is causing swelling in the brain

Age / Gender	<mark>28</mark> / F
APACHE-II (Prognosis)	3
Major Medical Hx	Severe Pneumonia
Rx Hill's Response (Levetiracetam)	1.20

Auditability: More than just Numbers!

Doctors' Assessment

- One of the patients is much younger, but her history of **severe chronic illness makes her comparable** to the other patient.
- Both patients have relatively high risk for seizures.
- Based on data available at hospital admission, these patients with history of epilepsy or relatively static neurological injury have good short term prognosis compared.

Qualitative Analysis ⁹⁷

Comparing Patients within a Matched Group

Future Directions

Auditable methods for high-stakes decisions

Future Directions

Advisors, Mentors, Collaborators and Friends!

Cynthia Rudin

Alexander Volfovsky

Eric Tchetgen Tchetgen

M Brandon Westover

Lise Getoor

Suciu

Babak Salimi

Marco Morucci

Kentaro Hoffman

Quinn

Lanners

Sudeepa

Roy

Amir Gilad

Vittorio Orlandi

Sun

Haoqi

Sahar Zafar

Srikar Katta

Thank you!

Personal-website: Lab-website: AME-Github: https://sites.google.com/view/harshparikh/ https://almost-matching-exactly.github.io/ https://github.com/almost-matching-exactly/MALTS

More Slides!!!

MALTS Experiments

Experiments

Experiment 1: MALTS has accuracy on-par with black box models

- Continuous and discrete covariates
- Highly non-linear process

Experiment 2: MALTS is end-to-end **interpretable**

• Compare matched groups across different matching methods

MALTS is consistently accurate as the *dimensionality* increases.

MALTS is consistently accurate as the *sample size* increases.

Friedman's Data Generation Process

••

Friedman's Data Generation Process

MALTS is on-par with black-box approaches even for highly non-linear data generation process.

MALTS Theory

00

Theoretical Guarantees

Theorem 1. Given a smooth distance metric, a K-nearest neighbors estimate of treatment effect *estimates* are accurate.

• Estimated treatment effect is consistent with the true treatment effect

Theorem 2. MALTS *learned* distance metric is generalizable

• For the *learned distance metric*, the empirical loss on the training set is not far from population loss (with high probability)

0.0

Smooth Distance Metric and Accurate CATEs

Smooth Distance Metric: If X_i and X_j are *close* under distance metric d_M, then **E**[$Y_i | X_i, T_i = t$] is also *close* to **E**[$Y_j | X_j, T_j = t$]

00

Smooth Distance Metric and Accurate CATEs

Smooth Distance Metric: If X_i and X_j are *close* under distance metric d_M, then **E**[$Y_i | X_i, T_i = t$] is also *close* to **E**[$Y_j | X_j, T_j = t$]

Given,

- Smooth distance metric d_M
- Covariate vector **x**
- Constant **α**

Theorem 1: If there exists a small enough caliper "a" and a large enough "N" then

 $P(|\widehat{\tau}(\mathbf{x}) - \tau(\mathbf{x})| \ge \alpha) \le \delta_{d_{\mathcal{M}}}(\alpha, |MG(\mathbf{x}, a)|)$

00

Smooth Distance Metric and Accurate CATEs

Smooth Distance Metric: If X_i and X_j are *close* under distance metric d_M, then **E**[$Y_i | X_i, T_i = t$] is also *close* to **E**[$Y_j | X_j, T_j = t$]

Given,

- Smooth distance metric d_M
- Covariate vector **x**
- Constant **α**

Theorem 1: If there exists a small enough caliper "a" and a large enough "N" then

 $P(|\hat{\tau}(\mathbf{x}) - \tau(\mathbf{x})| \ge \alpha) \le \delta_{d_{\mathcal{M}}}(\alpha, |MG(\mathbf{x}, a)|)$

Proof Sketch: Use the smooth distance metric property with Hoeffding's to bound the potential outcome estimates and truth with high probability. Then use triangle inequality.

Theoretical Guarantees

Theorem 1. Given a smooth distance metric, a K-nearest neighbors estimate of treatment effect *estimates* are accurate.

• Estimated treatment effect is consistent with the true treatment effect

Theorem 2. MALTS *learned* distance metric is generalizable

• For the *learned distance metric*, the empirical loss on the training set is not far from population loss (with high probability)

Losses

Pairwise Loss

$$loss[\mathcal{M}, s_i, s_l] := egin{cases} e^{-\mathbf{d}_{\mathcal{M}}(\mathbf{x}_i, \mathbf{x}_l)} |y_i - y_l| & ext{if } t_i = t_l \ \infty & ext{otherwise.} \end{cases}$$

$$\underline{\text{Empirical Avg. Loss}} \\
L_{emp}(\mathcal{M}, \mathcal{S}_n) := \frac{1}{n^2} \sum_{\substack{(s_i, s_l) \in (\mathcal{S}_n \times \mathcal{S}_n)}} loss[\mathcal{M}, s_i, s_l] \\
\Delta_{\mathcal{S}_{tr}}^{(C)}(\mathcal{M}) \leq \frac{1}{\exp\left(-\frac{g_0 \mathbf{C}_x^2}{c}\right) \left|\mathcal{S}_{tr}^{(C)}\right|^2} \sum_{s_i \in \mathcal{S}_{tr}^{(C)}} \sum_{s_l \in \mathcal{S}_{tr}^{(C)}} loss[\mathcal{M}, s_i, s_l] = \frac{L_{emp}(\mathcal{M}, \mathcal{S}_{tr}^{(C)})}{\exp\left(-\frac{g_0 \mathbf{C}_x^2}{c}\right)} \qquad \Delta_{\mathcal{S}_{tr}}^{(T)}(\mathcal{M}) \leq \frac{L_{emp}(\mathcal{M}, \mathcal{S}_{tr}^{(T)})}{\exp\left(-\frac{g_0 \mathbf{C}_x^2}{c}\right)}$$

Population Avg. Loss

$$L_{pop}(\mathcal{M}, \mathcal{Z}) := \mathbb{E}_{z_i, z_l} \overset{i.i.d}{\sim} \mu(\mathcal{Z}) \Big[loss[\mathcal{M}, z_i, z_l] \Big]$$

00

Robustness

if
$$\mathbf{x}_1, \mathbf{x}'_1 \in C_i$$
 and $\mathbf{x}_2, \mathbf{x}'_2 \in C_l$ such that $t_1 = t'_1 = t_2 = t'_2$ then
 $\left| loss[\mathcal{M}(\mathcal{S}_{tr}), s_1, s_2] - loss[\mathcal{M}(\mathcal{S}_{tr}), z_1, z_2] \right| \leq \epsilon(\mathcal{S}_{tr}).$

Intuitively, robustness means that for any possible units in the support, the loss is not far away from the loss of nearby units in training set, should some training units exist nearby.

Robustness

if
$$\mathbf{x}_1, \mathbf{x}'_1 \in C_i$$
 and $\mathbf{x}_2, \mathbf{x}'_2 \in C_l$ such that $t_1 = t'_1 = t_2 = t'_2$ then
 $\left| loss[\mathcal{M}(\mathcal{S}_{tr}), s_1, s_2] - loss[\mathcal{M}(\mathcal{S}_{tr}), z_1, z_2] \right| \leq \epsilon(\mathcal{S}_{tr}).$

Intuitively, robustness means that for any possible units in the support, the loss is not far away from the loss of nearby units in training set, should some training units exist nearby.

Multi-Robustness

if
$$\mathbf{x}_1, \mathbf{x}'_1 \in C_i$$
 and $\mathbf{x}_2, \mathbf{x}'_2 \in C_l$ such that $t_1 = t'_1 = t_2 = t'_2$ then
 $\left| loss[\mathcal{M}(\mathcal{S}_{tr}), s_1, s_2] - loss[\mathcal{M}(\mathcal{S}_{tr}), z_1, z_2] \right| \leq \epsilon(\mathcal{S}_{tr}).$

$$\widehat{\overline{loss}}[\mathcal{M}(\mathcal{S}_n), C_i^{(t')}, C_l^{(t')}] := \frac{1}{|C_i^{(t')}||C_l^{(t')}|} \sum_{(s_i, s_l) \in C_i^{(t')} \times C_l^{(t')}} loss[\mathcal{M}(\mathcal{S}_n), s_1, s_2] \\
\overline{loss}[\mathcal{M}(\mathcal{S}_n), C_i^{(t')}, C_l^{(t')}] := \mathbb{E}[loss(\mathcal{M}, Z_i, Z_l) \mid X_i' \in C_i^{(t')}, X_l' \in C_l^{(t')}]$$

Multi-robustness implies that for any two partitions of X , the *empirical* average loss over training points is not far away from the *population* average loss.

$$\forall C_i, C_l \in \boldsymbol{C}, \quad \left| \widehat{\overline{loss}}[\mathcal{M}(\mathcal{S}_n), C_i^{(t')}, C_l^{(t')}] - \overline{loss}[\mathcal{M}(\mathcal{S}_n), C_i^{(t')}, C_l^{(t')}] \right| \leq \epsilon(\mathcal{S}_n)$$

Multi-Robustness

Given,

- Constant $\beta \ge 0$
- K non-empty partitions of dom(X)
 - Here, K is γ -covering number of dom(X)

Theorem 2: d_M learned by MALTS is (K, β)-multirobust with probability greater than (1 - h(β ,n))

where,

- $0 \le h(\beta, n) \le 1$
- $h(\beta,n)$ is strictly monotonically decreasing function of β and n
- if $n \rightarrow \infty$ then $h(\beta, n) \rightarrow 0$

Multi-Robustness

Given,

- Constant $\beta \ge 0$
- K non-empty partitions of dom(X)
 - Here, K is γ -covering number of dom(X)

Theorem 2: d_M learned by MALTS is (K, β)-multirobust with probability greater than (1 - h(β ,n))

where,

- $0 \le h(\beta, n) \le 1$
- $h(\beta,n)$ is strictly monotonically decreasing function of β and n
- if n→∞ then h(β,n)→0

Proof Sketch: As dom(X) is compact, the covering number is finite. Population avg loss is equal to the expectation of empirical avg loss. Finally, we use McDiarmids to get the high probability bound.

Generalizability

<u>Generalizability</u>

$$P_{\mathcal{S}_n}\left(\sum_{t'\in\mathcal{T}} \left| L_{pop}(\mathcal{M}(\mathcal{S}_n), \mathcal{Z}^{(t')}) - L_{emp}(\mathcal{M}(\mathcal{S}_n), \mathcal{S}_n^{(t')}) \right| \ge \epsilon\right) \le \delta_{\epsilon}$$

Asymptotic Generalizability

$$\lim_{n \to \infty} \sum_{t' \in \mathcal{T}} \left| L_{pop}(\mathcal{M}(\mathcal{S}_n), \mathcal{Z}^{(t')}) - L_{emp}(\mathcal{M}(\mathcal{S}_n), \mathcal{S}_n^{(t')}) \right| = 0$$

With high probability, the population and empirical avg losses for the learned distance metric are close. Further, as the size of training set approaches infinity, the absolute difference of these two losses tend to zero.

Generalizability

<u>Generalizability</u>

$$P_{\mathcal{S}_n}\left(\sum_{t'\in\mathcal{T}} \left| L_{pop}(\mathcal{M}(\mathcal{S}_n), \mathcal{Z}^{(t')}) - L_{emp}(\mathcal{M}(\mathcal{S}_n), \mathcal{S}_n^{(t')}) \right| \ge \epsilon\right) \le \delta_{\epsilon}$$

Asymptotic Generalizability

$$\lim_{n \to \infty} \sum_{t' \in \mathcal{T}} \left| L_{pop}(\mathcal{M}(\mathcal{S}_n), \mathcal{Z}^{(t')}) - L_{emp}(\mathcal{M}(\mathcal{S}_n), \mathcal{S}_n^{(t')}) \right| = 0$$

Theorem 3: $d_{\rm M}$ learned by MALTS is generalizable and asymptotically generalizable

00

0,0

Generalizability

Lemma 3 (Error Bound) Given sample $S_n \stackrel{i.i.d}{\sim} \mu(\mathcal{Z})$ where $n^{(t')}$ is the number of units with $t_i = t'$ in S_n , and choosing B > 0 for which $loss[\cdot, z_i, z_l] \leq B \quad \forall z_i, z_l \in \mathcal{Z}$ (B is finite because \mathcal{X} is compact and \mathcal{Y} is bounded): if a learning algorithm provides a distance metric $\mathcal{M}(S_n)$ that is $(K, \epsilon(\cdot))$ -multi-robust with probability $p_{mr}(\epsilon)$, then for any $\mathcal{E} > 0$, with probability greater than or equal to $(1 - \mathcal{E})(p_{mr}(\epsilon))^{K^2}$ we have

$$\forall t' \in \mathcal{T}, \left| L_{pop}(\mathcal{M}(\mathcal{S}_n), \mathcal{Z}^{(t')}) - L_{emp}(\mathcal{M}(\mathcal{S}_n), \mathcal{S}_n^{(t')}) \right| \leq \epsilon(\mathcal{S}_n^{(t')}) + 2B\sqrt{\frac{2K \ln(2) + 2 \ln(1/\mathcal{E})}{n^{(t')}}}$$

Proof Sketch:

 Use Bretagnolle-Huber-Carol inequality bounds the empirical and population probability of units in each partition with high probability
 Perform algebraic manipulation to use multi-robustness to bound the empirical and population avg loss for each partition.

••

Mixed Data Generation Process

Continuous covariates

$$\mathbf{x}_{i,p_c} \stackrel{iid}{\sim} \mathcal{N}(\mu, \Sigma), \quad \{x_{i,j}\}_{j \in p_d} \stackrel{iid}{\sim} \text{Bernoulli}(\psi), \quad \epsilon_{i,0}, \epsilon_{i,1} \stackrel{iid}{\sim} \mathcal{N}(0, 1), \quad \epsilon_{i,\text{treat}} \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

$$s_1, \dots, s_{|k|} \stackrel{iid}{\sim} \text{Uniform}\{-1, 1\}, \quad \alpha_j | s_j \stackrel{iid}{\sim} \mathcal{N}(10s_j, 9), \quad \beta_1, \dots, \beta_{|k|} \stackrel{iid}{\sim} \mathcal{N}(1, 0.25)$$

