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Treating Patients in ICU

● Which drugs to use?

● When to administer these drugs?

● What should be the drug dose?
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Treating Patients in ICU

● Which drugs to use?

● When to administer these drugs?

● What should be the drug dose?

Doctors need to understand the 
risk-reward trade-offs!
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How to Treat Seizures in Critically-ill Patients?

Understanding risk-reward trade-offs

⇒ Understanding causal dependencies

5

Y

E

D

Seizure 
Burden in ICU

Post-discharge
Outcome 

Drug Concentration 
in ICU



How to Treat Seizures in Critically-ill Patients?

Understanding risk-reward trade-offs

⇒ Understanding causal dependencies

● How bad are seizures for brain?
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How to Treat Seizures in Critically-ill Patients?

Understanding risk-reward trade-offs

⇒ Understanding causal dependencies

● How bad are seizures for brain?

● How effective are anti-seizure 
medications (ASMs)?

● What are long-term effects of ASMs?
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How Bad are Seizures for Brain? (Results from the Literature)
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How Bad are Seizures for Brain? (Our Analysis)
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How Bad are Seizures for Brain? (Heterogeneity)
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How Effective are ASMs in Reducing Seizure Burden?

Parameters of Interest

● ED50: Dose required to reduce 
Sz burden by 50%

● α: binding between the receptor 
and the ligand (Hill’s coefficient)
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Results: How Effective are ASMs in Reducing Seizure Burden?
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Parameter Description Levetiracetam Propofol

Type Non Sedating Sedating

Avg. ED50 Dose required to reduce 
Seizure burden by 50%

5.57 mg/kg 1.88 mg/kg

Avg. α Binding between the 
receptor and the ligand (Hill’s 
coefficient)

1.168 2.34



Results: What are Long-term Negative Effects of ASMs? 
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Results: Implications
● Intense burst of seizures even for a short-period can lead to poor outcome

○ Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure 
bursts

● Patients with hypoxic ischemic encephalopathy (HIE) and CNS infection are 
adversely affected by seizures

○ Prioritize aggressive treatment for patients with these diagnosis

● Primary seizure management using levetiracetam
○ Use of propofol limited only to control seizure bursts 

● Multi-center observational and experimental studies to understand effect 
heterogeneity across patients and ensure generalizability
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Causal Methods for 
Complex Data
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Validating 
Causal 

Inference 
Methods

● PVXT, ICML

Auditable 
Methods

● PRV, JMLR
● PRV, Obs Study
● LPVRP, 

Submitted
● KPVRSW, AAAI 

W3PHIAI

Mechanistic 
Model 

Augmented 
Study Design

● P*H*S*ZVRW, 
Submitted, Lancet 
Digital Health

● PZSVRW, working

Data Fusion for 
Generalizability 
and Efficiency

● M*O*P*VRR, Working

Causal 
Methods for 

Relational Data

● SPKRGS, SIGMOD
● PGSR, Preprint Interpretable 

RL for Optimal 
Treatment 
Regimes

● P*S*VRW, working

Research Overview 

Causal 
Methods for 
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Research Overview 
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Notations: What-ifs, Potential Outcomes and Causal Effects
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Notations: What-ifs, Potential Outcomes and Causal Effects
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Yi(0) Yi(1)
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Causal Effect of Seizures = Yi(1) - Yi(0)

Seizure=0 Seizure=1

Potential 
Outcomes Yi(0) Yi(1)



Notations: What-ifs, Potential Outcomes and Causal Effects
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Yi

Yi(0) Yi(1)

i

Causal Effect of Seizures = Yi(1) - Yi(0) = ? - Yi

Seizure=0 Seizure=1

Potential 
Outcomes Yi(0) Yi(1)



Confounding

26

Y

E

Seizures in ICU

Post-discharge
Outcome



Confounding
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Confounding
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How to Treat Seizures in Critically-ill Patients?
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How to Treat Seizures in Critically-ill Patients?
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How to Treat Seizures in Critically-ill Patients?
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How to Treat Seizures in Critically-ill Patients?
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How to Treat Seizures in Critically-ill Patients?
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Pharmacology and Entangled Exposures
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Covariates

Past Seizure 
Burden

Pharmacology and Entangled Exposures
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Pharmacokinetic 
Parameter

Past and Current 
Drugs 

Administered

Pharmacology and Entangled Exposures
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Mechanistic Modeling of Pharmacology
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Mechanistic Modeling of Pharmacology
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Why Mechanistic model?

● Based on the fundamental laws of natural sciences 

● Lesser data needed to calibrate 

● Mechanistic vs statistical models: model parameters have 
an actual physical meaning



Mechanistic Modeling of Pharmacology
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Drug dose for 
50% Sz burden

Mechanistic Modeling of Pharmacology
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Drug Discharge Rate 

Mechanistic Modeling of Pharmacology
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Controlling for Confounders: Covariates & Pharmacology
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Controlling for Confounders: Covariates & Pharmacology
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How Matching Works?

Almost Identical
Medical Twins
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Controlling for Confounders: Covariates & Pharmacology
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Why Matching?

● Conceptual simplicity (comparing like with like) [RR, 1983] 



Controlling for Confounders: Covariates & Pharmacology
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Why Matching?

● Conceptual simplicity (comparing like with like) [RR, 1983] 

● Adjustments are an interpolation (unlike regression) [Imbens 2015] 



Controlling for Confounders: Covariates & Pharmacology
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Why Matching?

● Conceptual simplicity (comparing like with like) [RR, 1983] 

● Adjustments are an interpolation (unlike regression) [Imbens 2015] 

● Covariate based matching methods are interpretable [WMALRRV, 2018]



Controlling for Confounders: Covariates & Pharmacology
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Why Matching?

● Conceptual simplicity (comparing like with like) [RR, 1983] 

● Adjustments are an interpolation (unlike regression) [Imbens 2015] 

● Covariate based matching methods are interpretable [WMALRRV, 2018]

● Facilitates sensitivity analysis to biases due to unobserved 
confounding [Rosenbaum 1987]



Challenges with Matching: Toenail Problem
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Name ASM Death (Y) Hx Epilepsy (X1) Toenail-Length (X2)

Jim 1 0 1 0.2 inch

Joe 0 0 0 0.1 inch

Jill 0 1 1 1 inch
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Challenges with Matching: Toenail Problem
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Name  ASM Death (Y) Hx Epilepsy (X1) Toenail-Length (X2)

Jim 1 0 1 0.2 inch

Joe 0 0 0 0.1 inch
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MALTS: Matching After Learning to Stretch
(Interpretable-and-Accurate Estimation Framework)
H Parikh, C Rudin, A Volfovsky - Journal of Machine Learning Research, 2022
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MALTS Framework
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MALTS Framework
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MALTS Framework
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MALTS Framework
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Estimation

57

Es
tim

at
io

n 
Se

t 
(E

st
.)

Data (D)

Training 
Set (Tr.)

β 
(ra

nd
om

) s
pl

its

β-
1 s

pl
its

Distance Metric 
Learning

Nearest 
Neighbor 
Matching

Mopt

Matched 
Groups

Causal 
Effects



Estimation
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Estimation
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Estimation
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where,

K Nearest Neighbors 
with treatment t’

Estimated potential 
outcome for treatment t’

Query Unit Distance Metric Set of Units with 
treatment t’

Number of nearest 
neighbors

Estimator e.g. mean, linear regression etc.



Estimation
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Estimation
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Estimated potential 
outcome for treatment t’

Continuous part
Discrete part

Stretched Euclidean Norm Weighted Hamming Distance



Training
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Training
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Training
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Estimated 
Treatment Effect

True 
Treatment Effect

Find a distance metric dM that minimizes the discrepancy 
between the estimated and the true treatment effect:



Training
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However, this loss cannot be evaluated because we 
observe only one of the potential outcomes. 

Find a distance metric dM that minimizes the discrepancy 
between the estimated and the true treatment effect:



Training
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Find a distance metric dM that minimizes the discrepancy 
between the estimated and the true treatment effect:

Surrogate 
Objective

However, this loss cannot be evaluated because we 
observe only one of the potential outcomes. 



Training
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Training
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Regularization loss Loss for control units Loss for treated units
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Training



Review: MALTS Framework
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Experiments
Experiment 1:  MALTS has accuracy on par with black box models

○ Continuous and discrete covariates
○ Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

○ Compare matched groups across different matching methods
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Quadratic Data Generation Process
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Quadratic Data Generation Process
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MALTS is consistently accurate 
as the dimensionality increases.

Linear 
Baseline Linear TE Quadratic TE



Quadratic Data Generation Process
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MALTS is consistently accurate 
as the sample size increases.

Linear 
Baseline Linear TE Quadratic TE



Friedman’s Data Generation Process
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Friedman’s Data Generation Process
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Baseline
Treatment 

Effect

MALTS is on-par with black-box 
approaches even for highly 
non-linear data generation process.



Experiments
Experiment 1:  MALTS has accuracy on par with black box models

○ Continuous and discrete covariates
○ Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

○ Compare matched groups across different matching methods
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Lalonde Experimental & Observational Study
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Lalonde Experimental & Observational Study
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Lalonde Experimental & Observational Study
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Lalonde Matched Groups
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Lalonde Matched Groups
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Lalonde Matched Groups
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Theoretical Guarantees
Theorem 1. (Consistency) Given a smooth distance metric, a K-nearest 
neighbors estimate of  treatment effect estimates are accurate.

○ Estimated treatment effect is consistent with the true treatment effect

Theorem 2. (Generalizability) MALTS learned distance metric is generalizable

○ For the learned distance metric, the empirical loss on the training set is not far from 
population loss (with high probability)
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Review: MALTS Framework
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Crossfitting: Repeat for each of the β splits

Smoothing: Repeat α times



Seizures in ICU Patients
Understanding the Matched Groups
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Back to 



Learned Distance Metric
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Learned Distance Metric

93

Pharmacodynamic 
parameters for an 
important ASM



Learned Distance Metric
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Measure of ICU mortality

Extent of impaired 
consciousness 
(in acute medical and 
trauma patients)
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Age / Gender 59 / F

APACHE-II
(Prognosis) 8

Major Medical Hx Subarachnoid 
Hemorrhage

Rx Hill’s Response 
(Levetiracetam) 1.26

… … 

Doctor’s
Notes

Traumatic brain Injury. 
Prior witnessed episodes 
of seizure; admitted after 
an episode of motionless 
stare

j

Age / Gender 62 / F

APACHE-II
(Prognosis) 7

Major Medical Hx Subarachnoid 
Hemorrhage

Rx Hill’s Response 
(Levetiracetam) 1.23

… … 

Doctor’s
Notes

Complicated neurological 
history; diagnosed with 
aseptic meningitis. 
Admitted after she was 
found unresponsive.

Auditability: It’s a Tight Match!

Comparing Patients within a Matched Group

i
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Age / Gender 64 / F

APACHE-II
(Prognosis) 3

Major Medical Hx Brain Tumor

Rx Hill’s Response 
(Levetiracetam) 1.22

… … 

Doctor’s
Notes

Brain tumor has grown 
larger and is causing 
swelling in the brain

j

Age / Gender 28 / F

APACHE-II
(Prognosis) 3

Major Medical Hx Severe Pneumonia

Rx Hill’s Response 
(Levetiracetam) 1.20

… … 

Doctor’s
Notes

Large brain blood 
vessel malformation 
that has caused focal 
seizures. Admitted due 
to pain and bleeding in 
the right eye.

Auditability: More than just Numbers!

Comparing Patients within a Matched Group

i
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Age / Gender 64 / F
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Major Medical Hx Brain Tumor

Rx Hill’s Response 
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Age / Gender 28 / F

APACHE-II
(Prognosis) 3

Major Medical Hx Severe Pneumonia

Rx Hill’s Response 
(Levetiracetam) 1.20

… … 

Doctor’s
Notes

Large brain blood 
vessel malformation 
that has caused focal 
seizures. Admitted due 
to pain and bleeding in 
the right eye.

Doctors’ Assessment
● One of the patients is much 

younger, but her history of 
severe chronic illness makes 
her comparable to the other 
patient. 

● Both patients have relatively 
high risk for seizures. 

● Based on data available at 
hospital admission, these 
patients with history of 
epilepsy or relatively static 
neurological injury have good 
short term prognosis 
compared. 

Auditability: More than just Numbers!

Comparing Patients within a Matched Group Qualitative Analysis
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Future 
Directions
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Auditable 
methods for 
high-stakes 

decisions

Epidemiological 
Studies

Identification under 
Imperfect Network 

Information

Identification under 
Violations of External 
Validity or Ignorability

Tackling:
● Missing Cov.
● Distributional Data
● Panel Data

Treatment Regime 
Estimation and 

Design of Exp. in 
Critical Care 

Matching Methods 
for Dynamic 
Interventions
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Thank you!

Personal-website: https://sites.google.com/view/harshparikh/
Lab-website: https://almost-matching-exactly.github.io/
AME-Github: https://github.com/almost-matching-exactly/MALTS
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MALTS Experiments 



Experiments
Experiment 1:  MALTS has accuracy on-par with black box models

○ Continuous and discrete covariates
○ Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

○ Compare matched groups across different matching methods
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Quadratic Data Generation Process
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Linear 
Baseline Linear TE Quadratic TE

Treatment Effect



Quadratic Data Generation Process
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MALTS is consistently accurate 
as the dimensionality increases.

Linear 
Baseline Linear TE Quadratic TE



Quadratic Data Generation Process
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MALTS is consistently accurate 
as the sample size increases.

Linear 
Baseline Linear TE Quadratic TE



Friedman’s Data Generation Process
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Effect



Friedman’s Data Generation Process
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Baseline
Treatment 

Effect

MALTS is on-par with black-box 
approaches even for highly 
non-linear data generation process.



MALTS Theory
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Theoretical Guarantees
Theorem 1. Given a smooth distance metric, a K-nearest neighbors estimate 
of  treatment effect estimates are accurate.

○ Estimated treatment effect is consistent with the true treatment effect

Theorem 2. MALTS learned distance metric is generalizable

○ For the learned distance metric, the empirical loss on the training set is not far from 
population loss (with high probability)
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Smooth Distance Metric and Accurate CATEs
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Smooth Distance Metric: If Xi and Xj are close under distance metric dM, then E[ 
Yi | Xi, Ti=t ] is also close to E[ Yj | Xj, Tj=t ]



Smooth Distance Metric and Accurate CATEs
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Smooth Distance Metric: If Xi and Xj are close under distance metric dM, then E[ 
Yi | Xi, Ti=t ] is also close to E[ Yj | Xj, Tj=t ]

Given,
● Smooth distance metric dM
● Covariate vector x
● Constant α

Theorem 1: If there exists a small enough caliper “a” and a large enough “N” then



Smooth Distance Metric and Accurate CATEs
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Proof Sketch: Use the smooth distance metric property with Hoeffding’s to 
bound the potential outcome estimates and truth with high probability. Then use 
triangle inequality.

Smooth Distance Metric: If Xi and Xj are close under distance metric dM, then E[ 
Yi | Xi, Ti=t ] is also close to E[ Yj | Xj, Tj=t ]

Given,
● Smooth distance metric dM
● Covariate vector x
● Constant α

Theorem 1: If there exists a small enough caliper “a” and a large enough “N” then



Theoretical Guarantees
Theorem 1. Given a smooth distance metric, a K-nearest neighbors estimate of  
treatment effect estimates are accurate.

○ Estimated treatment effect is consistent with the true treatment effect

Theorem 2. MALTS learned distance metric is generalizable

○ For the learned distance metric, the empirical loss on the training set is not far from 
population loss (with high probability)
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Losses
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Pairwise Loss

Empirical Avg. Loss

Population Avg. Loss



Robustness
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Intuitively, robustness means that 
for any possible units in the 
support, the loss is not far away 
from the loss of nearby units in 
training set, should some training 
units exist nearby.



Robustness
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z2
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Intuitively, robustness means that 
for any possible units in the 
support, the loss is not far away 
from the loss of nearby units in 
training set, should some training 
units exist nearby.



Multi-Robustness
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Multi-robustness implies that for 
any two partitions of X , the 
empirical average loss over 
training points is not far away 
from the population average loss. 
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Multi-Robustness
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Given,
● Constant β ≥ 0
● K non-empty partitions of dom(X)

○ Here, K is γ-covering number of dom(X)

Theorem 2: dM learned by MALTS is (K,β)-multirobust with probability greater than (1 - h(β,n))

where, 
● 0 ≤ h(β,n) ≤ 1
● h(β,n) is strictly monotonically decreasing function of β and n
● if n→∞ then h(β,n)→0



Multi-Robustness
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Proof Sketch: As dom(X) is compact, the covering number is finite. 
Population avg loss is equal to the expectation of empirical avg loss. 
Finally, we use McDiarmids to get the high probability bound.

Given,
● Constant β ≥ 0
● K non-empty partitions of dom(X)

○ Here, K is γ-covering number of dom(X)

Theorem 2: dM learned by MALTS is (K,β)-multirobust with probability greater than (1 - h(β,n))

where, 
● 0 ≤ h(β,n) ≤ 1
● h(β,n) is strictly monotonically decreasing function of β and n
● if n→∞ then h(β,n)→0



Generalizability
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Generalizability

Asymptotic Generalizability

With high probability, the 
population and empirical avg 
losses for the learned distance 
metric are close. Further, as the 
size of training set approaches 
infinity, the absolute difference of 
these two losses tend to zero.



Generalizability
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Generalizability

Asymptotic Generalizability

Theorem 3: dM learned by MALTS is generalizable and asymptotically generalizable



Generalizability
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Proof Sketch: 
1. Use Bretagnolle-Huber-Carol inequality bounds the empirical and population 
probability of units in each partition with high probability
2. Perform algebraic manipulation to use multi-robustness to bound the empirical 
and population avg loss for each partition. 



Mixed Data Generation Process
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Continuous covariates Discrete covariates

Linear Baseline

Linear TE Quadratic TE


