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Treating Patients in ICU

e Which drugs to use?
e When to administer these drugs?
e What should be the drug dose?

Doctors need to understand the
risk-reward trade-offs!
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How to Treat Seizures in Critically-ill Patients?

Understanding risk-reward trade-offs

Seizure . .
Burden in ICU = Understanding causal dependencies

e How bad are seizures for brain?

e How effective are anti-seizure
medications (ASMs)?

e What are long-term effects of ASMs?
Post-discharge

Outcome

Drug Concentration
inICU



How Bad are Seizures for Brain? (Results from the Literature)

Seizure Burden
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How Bad are Seizures for Brain? (Our Analysis)

Probability of Poor Outcome
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How Bad are Seizures for Brain? (Heterogeneity)

Seizure Burden

ACE: 22.27%
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How Effective are ASMs in Reducing Seizure Burden?

Seizure Burden

Parameters of Interest

e ED50: Dose required to reduce
Sz burden by 50%

e a binding between the receptor
and the ligand (Hill's coefficient)
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Results: How Effective are ASMs in Reducing Seizure Burden?

Parameter Description Levetiracetam Propofol

Type Non Sedating Sedating

Avg. ED50 Dose required to reduce 5.57 mg/kg 1.88 mg/kg
Seizure burden by 50%

Avg. a Binding between the 1.168 2.34
receptor and the ligand (Hill's
coefficient)




Results: What are Long-term Negative Effects of ASMs?

Probability of Poor Outcome
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Results: Implications

e Intense burst of seizures even for a short-period can lead to poor outcome

o Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure
bursts
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Results: Implications

e Intense burst of seizures even for a short-period can lead to poor outcome

o Design anti-seizure medication (ASM) treatment regime to suppress these intense seizure
bursts

e Patients with asphyxia and CNS infection are adversely affected by
seizures

o Prioritize aggressive treatment for patients with these diagnosis
e Primary seizure management using levetiracetam

o Use of propofol limited only to control seizure bursts

e Multi-center observational and experimental studies to understand effect
heterogeneity across patients and ensure generalizability



Causal Methods for
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Notations: What-ifs, Potential Outcomes and Causal Effects
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Notations: What-ifs, Potential Outcomes and Causal Effects
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Causal Effect of Seizures = Y (1) - Y(0)



Notations: What-ifs, Potential Outcomes and Causal Effects
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How to Treat Seizures in Critically-ill Patients?

Pharmacodynamics
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How to Treat Seizures in Critically-ill Patients?
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How to Treat Seizures in Critically-ill Patients?

Covariates

Pharmacodynamics (how drug affects body?)
E.g., rate of drug molecule binding with receptors

P

Seizure Burden

W

Drug Dose
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Pharmacology and Entangled Exposures
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Pharmacology and Entangled Exposures
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Pharmacology and Entangled Exposures

Pharmacodynamics
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Mechanistic Modeling of Pharmacology
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Mechanistic Modeling of Pharmacology
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Mechanistic Modeling of Pharmacology
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Controlling for Confounders: Covariates & Pharmacology
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Controlling for Confounders: Covariates & Pharmacology

Pharmacokinetics
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Challenges with Matching: Toenail Problem
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MALTS: Matching After Learning to Stretch

(Interpretable-and-Accurate Estimation Framework)
H Parikh, C Rudin, A Volfovsky - Journal of Machine Learning Research, 2022
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MALTS Framework

B (random) splits

A

Training
Set (Tr)

Estimation Set
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B-1 splits

Distance Metric
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Estimation
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Estimation

Estimated potential f/x(f') _ ¢ (MG(si,dM,ST(f/),K))

outcome for treatment t'

where,

K Nearest Neighbors
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( M ) M( ) ’ Z (M(l ) M )) with treatment t'
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Estimation

Query Unit  Distance Metric

Estimated potential f/x(f') _ ¢ (MG(si,dM,ST(Lt/),K))

outcome for treatment t'

where,

K Nearest Neighbors

MG (s;, dag, SE), K) = KNNS? (xi, 1) = {s : [ (A (x,xi) < d(xp, X ] <K}
( ) M( ) ’ Z ( (1, 1) (x )) with treatment t'
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Estimation

Set of Units with

Query Unit  Distance Metric treatment t
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outcome for treatment t'
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Estimation

Query Unit Distance Metric Set of Umtsv with Number of nearest
treatment t neighbors
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Estimation

Query Unit Distance Metric Set of Umtsv with Number of nearest
treatment t neighbors
Estimated potential S @)
outcome for treatment t' sz‘ - ¢ (MG(si’ dMa Sn ) K)

where, Estimator e.g. mean, linear regression etc.

K Nearest Neighbors

MG (si, dag, SE) K) = KNNSH (x4, ¢) == {s : [ (A (x,xi) < d(xp, X ] <K}
( ) M( ) ’ Z ( (1, 1) (x )) with treatment t'
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Estimation

Distance Metric

Estimated potential S v
outcome for treatment t sz‘ - ¢ (MG(si’ dMa Sr(z )7 K))
da(a, b) = dag (ac, be) + dag,(aq, ba)
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Continuous part



Estimation

Estimated potential f/x(f') _ ¢ (MG(si,dM,ST(Lt/),K))

outcome for treatment t'

dm(a, b) = dm,(ac, be) + day(aq, ba)

. Discrete part
Continuous part |aal

de(ad; bd) — Zng,j)ﬂ[a’gj) £ b((i])]

nd(aC> bC) = ||Mcac - Mcbc||2 -
]:

Stretched Euclidean Norm Weighted Hamming Distance



Training

B (random) splits

A

Training
Set (Tr)

66



Training

B (random) splits

A

Training
Set (Tr)

67



Training

7 = ¢ (MG(si, dur, S, K) )

Find a distance metric d,, that minimizes the discrepancy
between the estimated and the true treatment effect:

~ ~(C
miny LY, 07, -7 v - v©)
U v J U v J
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Treatment Effect Treatment Effect



Training

7 = ¢ (MG(si, dur, S, K) )

Find a distance metric d,, that minimizes the discrepancy
between the estimated and the true treatment effect:
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1

However, this loss cannot be evaluated because we
observe only one of the potential outcomes.



Training

7 = ¢ (MG(si, dur, S, K) )

Find a distance metric d,, that minimizes the discrepancy
between the estimated and the true treatment effect:

miny £ S0, (7~ VY - v(©)

1

However, this loss cannot be evaluated because we
observe only one of the potential outcomes.

Surrogate ) n ~(T) >(C)
objective  Mminp = > ootV yi) + (1 — )Yy, yi)



Training

M(Sy) € argmin (e M7+ AG)(M) + AG) (M)




Training

Regularization loss Loss for control units Loss for treated units

M(Sy) € argmin (M= + AS) (M) + AG (M)

e—dm(xix;)

(®) _ 1 _
AStT(M) - Z Z Zskes(t) e—dm(xi,xk) Y

53] siest) et




Training

M(Sy) € argmin (e M7+ AG)(M) + AG) (M)

Weighted Nearest
Neighbors Estimate

A
A Y
—dM X; xl)
(®) 1
str( ) (t) Z Yi Z Z e—dm( xz,Xk)yl
tr | siESt(ﬁ) st ES(t) skes(t)
4 v J
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Review: MALTS Framework
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Experiments

Experiment 1. MALTS has accuracy on par with black box models

o Continuous and discrete covariates
o Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

o Compare matched groups across different matching methods
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Quadratic Data Generation Process
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Quadratic Data Generation Process
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Quadratic Data Generation Process

Linear
Baseline Linear TE Quadratic TE
Yo oo Do BmglH Yo Dz
j€kUkg Jj€kUkg jE€kUky j' €k Uky
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MALTS is consistently accurate
as the sample size increases.
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Friedman’s Data Generation Process

Baseline

Treatment
Effect
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Friedman’s Data Generation Process

Baseline

Treatment
Effect

10 sin(mz;1252) +20 (2i3 —0.5)2 + 10 254 + 5 i 5

_|_

x;3 cos(mx;12:2)|+ €1

6000%

4000%

2000%

Relative Error (%)

0%

MALTS is on-par with black-box
approaches even for highly
non-linear data generation process.




Experiments

Experiment 1: MALTS has accuracy on par with black box models

o Continuous and discrete covariates
o Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

o Compare matched groups across different matching methods
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Lalonde Experimental & Observational Study

ATE Estimate

Method

Truth 886
GenMatch 549.53
Propensity Score 513.79
Prognostic Score -897.76
BART-CV 713.20
Causal Forest-CV -179.98

MALTS (pruned) 891.75



Lalonde Matched Groups

Treatment Covariates Outcome
Unit ID Treated | Age Education Black Hispanic Married No-Degree Income-1975 | Income-1978
Query: 1 Yes 22 9 No Yes No Yes $0 $3596
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Lalonde Matched Groups

Treatment Covariates Outcome

Unit ID Treated | Age Education Black Hispanic Married No-Degree Income-1975 | Income-1978

Query: 1 Yes 22 9 No Yes No Yes $0 $3596
Prognostic Scores

338 No 44 9 Yes No No Yes $0 $9722

340 No 22 12 Yes No No No $532 $1333

355 No 18 10 No Yes No Yes $0 $1859
Propensity Scores

451 No 22 8 Yes No No Yes $0 $1391

330 No 22 8 No Yes No Yes $0 $9921

407 No 20 12 Yes No No No $1371 $20893

Our Approach (MALTS)

330 No 22 8 No Yes No Yes $0 $9921

299 No 22 9 Yes No No Yes $0 $0

416 No 22 9 Yes No No Yes $0 $12898




Theoretical Guarantees

Theorem 1. (Consistency) Given a smooth distance metric, a K-nearest

neighbors estimate of treatment effect estimates are accurate.
o Estimated treatment effect is consistent with the true treatment effect

Theorem 2. (Generalizability) MALTS learned distance metric is generalizable

o Forthe learned distance metric, the empirical loss on the training set is not far from
population loss (with high probability)



Review: MALTS Framework

Distance Metric
r _. Learning
Training
Set (Tr)
%)
=
(@}
N 3
Data (D) —» CE) < ©
S p 8
o] = Nearest
g T W > % Neighbor [\g?;cljlesd
(do} E o Matching P
9 (<o}
- y

Crossfitting. Repeat for each of the 8 splits

Smoothing: Repeat a times



Back to

Seizures in ICU Patients
Understanding the Matched Groups



Learned Distance Metric
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Learned Distance Metric

A Top3
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Learned Distance Metric

Extent of impaired
consciousness Top 5
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)
Age / Gender 59/ F
APACHE-II 8

(Prognosis)

Subarachnoid

Major Medical Hx Hemorrhage

Rx Hill's Response

(Levetiracetam) =

Traumatic brain Injury.
Prior witnessed episodes
of seizure; admitted after
an episode of motionless
stare

Doctor's
Notes

Age / Gender

APACHE-II
(Prognosis)

Major Medical Hx

Rx Hill's Response
(Levetiracetam)

Doctor’s
Notes

Auditability: It’s a Tight Match!

62/F

Subarachnoid
Hemorrhage

1.23

Complicated neurological
history; diagnosed with
aseptic meningitis.
Admitted after she was
found unresponsive.

Comparing Patients within a Matched Group



Age / Gender

APACHE-II
(Prognosis)

Major Medical Hx

Rx Hill's Response
(Levetiracetam)

Doctor'’s
Notes

64/ F

Brain Tumor

1.22

Brain tumor has grown
larger and is causing
swelling in the brain

Auditability: More than just Numbers!

Age / Gender

APACHE-II
(Prognosis)

Major Medical Hx

Rx Hill's Response
(Levetiracetam)

Doctor's
Notes

28/F

Severe Pneumonia

1.20

Large brain blood
vessel malformation
that has caused focal
seizures. Admitted due
to pain and bleeding in
the right eye.

Comparing Patients within a Matched Group



@,
Age / Gender 64/ F
APACHE-II
(Prognosis) £
Major Medical Hx Brain Tumor
Rx Hill's Response Lo

(Levetiracetam)

Brain tumor has grown
larger and is causing
swelling in the brain

Doctor'’s
Notes

Auditability: More than just Numbers!

Age / Gender

APACHE-II
(Prognosis)

Major Medical Hx

Rx Hill's Response
(Levetiracetam)

Doctor's
Notes

28/F

Severe Pneumonia

1.20

Large brain blood
vessel malformation
that has caused focal
seizures. Admitted due
to pain and bleeding in
the right eye.

Comparing Patients within a Matched Group

/

Doctors’ Assessment

e One of the patients is much
younger, but her history of
severe chronic illness makes
her comparable to the other
patient.

e Both patients have relatively
high risk for seizures.

e Based on data available at
hospital admission, these
patients with history of
epilepsy or relatively static
neurological injury have good

\

short term prognosis

compared.
Qualitative Analysis

\_




Future
Directions

Auditable
methods for
high-stakes
decisions



Future
Directions

Methods for
Network
Data

Data Fusion

Mechanistic Model
Augmented Study

Auditable
methods for
high-stakes
decisions

Optimal
Treatment
Regimes

Matching &
Balancing
Score
Methods

99



Future
Directions

Treatment Regime
Estimation and
Design of Exp. in
Critical Care

Epidemiological
Studies

Mechanistic Model
Augmented Study

Methods for

Optimal
Network Treatment
Data Regimes

- Auditable o .

Identification under methods for Matching Met lods

Imperfect Network hiah K for Dynamic
Information igh-stakes

A Interventions
decisions

Matching &
Balancing
Score
Methods

Data Fusion

Identification under
Violations of External
Validity or Ignorability,

Tackling:

e Missing Cow.
e Distributional Dats
e Panel Data

100



Advisors, Mentors, Collaborators and Friends!

Cynthia Alexander Sudeepa Eric Tchetgen M Brandon
Rudin Volfovsky Roy Tchetgen Westover

Vittorio
Orlandi

Marco Kentaro Quinn
Morucci Hoffman Lanners
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Thank you!

Personal-website: https://sites.google.com/view/harshparikh/
Lab-website: https://almost-matching-exactly.github.io/
AME-Github: https://github.com/almost-matching-exactly/MALTS
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More Slides!!!
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MALTS Experiments

D k ’ALMOSTMATCHING
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Experiments

Experiment 1: MALTS has accuracy on-par with black box models

o Continuous and discrete covariates
o Highly non-linear process

Experiment 2: MALTS is end-to-end interpretable

o Compare matched groups across different matching methods



Quadratic Data Generation Process

Linear
Baseline Linear TE Quadratic TE
Yo agmigi Do Bmg Yo D migmigtein
j€kUkg Jj€kUkg jE€kUky j' €k Uky
1\

J

Y

Treatment Effect



Quadratic Data Generation Process

Linear N Ousdratic T MALTS is consistently accurate
Baseline Inear uadratic , , G T
> B IESEES . as the dimensionality increases.
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Quadratic Data Generation Process

Linear
Baseline Linear TE Quadratic TE
Yo oo Do BmglH Yo Dz
j€kUkg Jj€kUkg jE€kUky j' €k Uky

Mean Relative CATE Error (percentage)

300%

+ 61"1

Propensity Score

200%

MALTS is consistently accurate
as the sample size increases.
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Friedman’s Data Generation Process

Baseline

Treatment
Effect

10 sin(mz;1252) +20 (2i3 —0.5)2 + 10 254 + 5 i 5

_|_

Zi3 COS(7T£L'i,1 :L'i,z)

+ €1



Friedman’s Data Generation Process

Baseline

Treatment
Effect

10 sin(mz;1252) +20 (2i3 —0.5)2 + 10 254 + 5 i 5

_|_

x;3 cos(mx;12:2)|+ €1

6000%

4000%

2000%

Relative Error (%)

0%

MALTS is on-par with black-box
approaches even for highly
non-linear data generation process.




MALTS Theory



Theoretical Guarantees

Theorem 1. Given a smooth distance metric, a K-nearest neighbors estimate

of treatment effect estimates are accurate.
o Estimated treatment effect is consistent with the true treatment effect

Theorem 2. MALTS learned distance metric is generalizable

o Forthe learned distance metric, the empirical loss on the training set is not far from
population loss (with high probability)



Smooth Distance Metric and Accurate CATEs

Smooth Distance Metric: If Xi and X are close under distance metric dM. then EI[
Y, | X, T=tlis also close to El YJ. | XJ., 'IJJ.=t ]



Smooth Distance Metric and Accurate CATEs

Smooth Distance Metric; Iin and X are close under distance metric dM, then EI[
Y, | X, T=tlis also close to El YJ. | XJ., 'IJJ.=t ]

Given,
e Smooth distance metric dM
e Covariate vector x
e Constanta

Theorem 1: If there exists a small enough caliper “a” and a large enough “N" then
P(IT(x)=7(x)| 2 a) < dq,, (o, MG (%, a)|)



Smooth Distance Metric and Accurate CATEs

Smooth Distance Metric: Iin and X are close under distance metric dM, then EI[
Y,IX, Tt Tis also close to EL'Y, | X, Tt

Given,
e Smooth distance metric dM
e Covariate vector x
e Constanta

Theorem 1: If there exists a small enough caliper “a” and a large enough “N" then
P(|7(x)—7(x)| = a) < 0q, (o, [MG(x,a)|)

Proof Sketch: Use the smooth distance metric property with Hoeffding's to
bound the potential outcome estimates and truth with high probability. Then use
triangle inequality.



Theoretical Guarantees

Theorem 1. Given a smooth distance metric, a K-nearest neighbors estimate of

treatment effect estimates are accurate.
o Estimated treatment effect is consistent with the true treatment effect

Theorem 2. MALTS learned distance metric is generalizable

o For the learned distance metric, the empirical loss on the training set is not far from
population loss (with high probability)



Losses

Pairwise Loss

—dpm(Xi,X1) |, — T

€ if t;, =

ZOSS[M,Si,Sl] = { |yz yl| i l
(0. @)

otherwise.

Empirical Avg. Loss

1
Lemp(M, Sp) := 3 Z loss| M, s;, s1]
(Siasl)E(SnXSn)

Lo s©)
‘(S?T)(M) < <O Z Z loss|M, s;, 8] = p(Mg,OCE )
exp( go ) S S5 ES(TC)S ES(f) oxp (_—)

Cc

Population Avg. Loss

Lpop(Ma Z) = IE i.4.d

s i2) [loss[M, Zis zl]]

A\




Robustness

ifx1,x] € C; and x2,x5 € Cy such that t; = t| =ty = t,, then

‘ loss[M(Str), s1, s2] — loss|[M(Str), 21, 22] | < €(Sir).

Intuitively, robustness means that
for any possible units in the
support, the loss is not far away
from the loss of nearby units in
training set, should some training
units exist nearby.



Robustness

ifx1,x] € C; and x2,x5 € Cy such that t; = t| =ty = t,, then

‘ loss[M(Str), s1, s2] — loss|[M(Str), 21, 22] | < €(Sir).

Intuitively, robustness means that
for any possible units in the
support, the loss is not far away
from the loss of nearby units in
training set, should some training
units exist nearby.



Multi-Robustness

Multi-robustness implies that for
any two partitions of X, the
=S ) ) 1 empirical average loss over
losslM(Sn), G, G 7] = 2 loss|M(Sn), 51, 52] training points is not far away

c:ley”) @ ot
(si,81)€C;” "XC) ,
_ ) () ) ) from the population average loss.
loss[M(S,),C;" 7, C)" ] := Elloss(M, Z;, Zy) | X; € C;" 7/, X[ € C ]

——

VC;,Cy € C, | lossIM(S,),C), )] — TossIM(S,), €, ] | < (Sy)




Multi-Robustness

Given,
e Constantfz0
e K non-empty partitions of dom(X)
o Here, Kis y-covering number of dom(X)

Theorem 2: d,, learned by MALTS is (K,B)-multirobust with probability greater than (1 - h(,n))

where,
e O=s<h(Bn)=s1
e h(B,n)is strictly monotonically decreasing function of B and n
e ifn—wthen h(B,n)—0



Multi-Robustness

Given,
e Constantfz0
e K non-empty partitions of dom(X)
o Here, Kis y-covering number of dom(X)

Theorem 2: d,, learned by MALTS is (K,B)-multirobust with probability greater than (1 - h(,n))

where,
e O=s<h(Bn)=s1
e h(B,n)is strictly monotonically decreasing function of B and n
e ifn—wthen h(B,n)—0

Proof Sketch: As dom(X) is compact, the covering number is finite.
Population avg loss is equal to the expectation of empirical avg loss.
Finally, we use McDiarmids to get the high probability bound.



Generalizability

Generalizability

P, (3 [Ermton

teT

Asymptotic Generalizability

lim
n—o0

> [Zoop(M

t'eT

M(Sr), 2D) = Lemp(M(S,), SE)

(Sn); 2)) = Lemp(M(Sy),

NG

n

26)§5€

)

=0

With high probability, the
population and empirical avg
losses for the learned distance
metric are close. Further, as the
size of training set approaches
infinity, the absolute difference of
these two losses tend to zero.



Generalizability

Generalizability

(Z\Lpop (8n)s 2%7) = Lomp(M(S), S5) Z‘E)S&e
teT

Asymptotic Generalizability

lim " ’Lpop )y 28)) = Lo (M(S,), SEY| =0

n—o0

t'eT

Theorem 3: d,, learned by MALTS is generalizable and asymptotically generalizable



Generalizability

Lemma 3 (Error Bound) Given sample S, b w(Z) where n'*) is the number of units
with t; = t' in S,, and choosing B > 0 for which loss[-, z,z1)] < B Vz;,z1 € Z (B is
finite because X is compact and Y is bounded): if a learning algorithm provides a distance
metric M(Sy) that is (K, €(-))-multi-robust with probabzlzty DPmr(€), then for any € > 0, with
probability greater than or equal to (1 — E)(pmr(€))X" we have

V€T, | Lop(M(Sn)s 28) = Lomp(M(Sn), S SE(s,gt'>)+zB\/ 28 ) & 2 U
n

Proof Sketch:

1. Use Bretagnolle-Huber-Carol inequality bounds the empirical and population
probability of units in each partition with high probability

2. Perform algebraic manipulation to use multi-robustness to bound the empirical
and population avg loss for each partition.



Mixed Data Generation Process

Continuous covariates Discrete covariates

Xipe &N, 2N {zi i} ep, % Bernoulli(sh), €0, €11 S N(0,1), € treat ~ N(0,02)

81,.. 0, S|k o Uniform{—1,1}, aj|s; = (10s5,9), B1,---, Bk @N(1,0.25)

Linear Baseline

0
yf) = E 0T I+ €0
jE€EkUky Linear TE Quadratic TE
1
w o= Y et Y Bmgl Yo Y mimigften
jekoUky jekoUkg j€keUkg j' €koUky

ti = 11 explt Z mi’j + Z miyj - (lK'Cllu' + l"{’dl,l/)) + ei,treat > 0-5
J€kCke J€ERGCky

v =ty + -ty



