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The Zoo of Causal Methods
Many statistical methods have emerged for causal inference under unconfoundedness conditions 
given pre-treatment covariates, including: 

○ propensity score-based methods, 

○ prognostic score-based methods, 

○ doubly robust methods. 



No ‘One-Size Fits All’ Method
Unfortunately for applied researchers, there is no ‘one-size-fits-all’ causal method that can perform optimally universally



The Difficulty on Estimating and Validating Causal Effects

The fundamental challenge of drawing causal inference is that 

○ The counterfactual outcomes are not fully observed for any unit. 

○ Furthermore, in observational studies, treatment assignment is likely to be confounded.

○ Thus, almost all causal inference methods depend on some untestable assumption(s).  
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Objective: Evaluate Causal Methods using Synthetically 
Generated Data with (i) known Treatment Effects and 
(ii) is as complex as the Real Data of Interest



Credence
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Notations
X, Y, Z : observed covariates, outcomes and treatment

Y(z) : potential outcome under treatment z

X’ :  simulated covariates

Y’(z) : simulated potential outcome

Z’ : simulated treatment



Credence Framework
Our approach to generate synthetic data (X’, Y’ ,Z’) that satisfies two salient properties sought out in 
simulation studies: 

● simulated samples that are stochastically indistinguishable from the observed data sample 

● User-specified causal treatment effects, heterogeneity, and endogeneity.
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Learning a Candidate Data Generator under Constraints



Variational Autoencoders
We leverage deep generative model such as Variational Autoencoders (VAE) trained on 
the data set of primary interest, which is the basis to operationalize the proposed 
framework. 



How do Variational Autoencoders work? 
(An Oversimplified Introduction)
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Conditional Variational Autoencoders
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Credence with Conditional VAE
We learn 3 distributions:

● P( Z )
○ Binary Z: just learn the proportion of treated units; No VAE needed

● P( X | Z )
○ Fit a conditional VAE; minimize d(X,X’)

● P( Y(1), Y(0) | X, Z )
○ Fit a conditional VAE; 
○ minimize d(Y,Y’) + constraints for treatment effects and selection bias



Review: Credence Framework
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Generate synthetic data (X’, Y’ ,Z’) that satisfies two salient properties sought out in simulation studies: 

● simulated samples that are stochastically indistinguishable from the observed data sample 

● User-specified causal treatment effects, heterogeneity, and endogeneity.

● Use conditional VAEs to with constraints to learn the data generative process
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True DGP* vs Credence learned DGP?
* only possible for synthetic data

● The main takeaway from this analysis is that Credence is able to 
reproduce rankings obtained by an oracle with access to the true 
DGP in cases where the constraints broadly align with the 
structure of true DGP. 

● This highlights that the performances evaluated using Credence 
can provide reliable inferences in such a setting.
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Experimental ATE* vs Credence learned DGP?
* only possible for where we have access to both experimental as well as observational data

● For Lalonde’s data, rankings based on comparing observational ATE with experimental ATE are largely similar to rankings produced 
using Credence learned DGP except with respect to estimated variance of estimators.

● For Project STAR data, the estimated treatment effect based on observational data is significantly different from experimental data which 
possibly indicates that the experimental sample lacks external validity [von Hippel and Wagner (2018); Justman (2018)]. 

○ Acknowledging this caveat, most methods perform similarly except GBT T-learner, GBT X-learner, Causal Forest and PSM



Limitations
● Generative models are sensitive to hyper-parameters 
● Evaluations as good as the assumptions user makes

Future Directions
● Use Credence as a deep-bootstrap for inference
● Extension to scenarios with interference/homophily
● Theoretical guarantees on Credence based ranking

Thank you so much!



Discussion Questions
● How do you choose f() and g()?

○ Min-Max strategy: method that performs best for the worst choice of f and g
○ Using observed data to estimate largest feasible OVB using observed data

● Why do doubly robust methods not perform optimally always?
○ Finite sample 
○ Quadratic rate of bias

● VAE vs GAN?
○ VAE allows user to find the latent space location for every point in observed data

■ This allows user to sample from an interesting subspace if they are interested in doing that
○ GANs can be finicky and training them is more of an art sometimes
○ BTW, Credence can also be used with GANs or any other generative model of user’s choice


