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Resources
• Causality books and several articles by Judea Pearl 

are available at Duke library online – can be 
“loaned” up to 365 days – search for “Judea Pearl”
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Review: Probability

• Pr(X = x)
• Pr(AB) = Pr(A ∧ B)
• Pr(A|B) = Pr(A ∧ B) / Pr(B)
• Pr(A | B) = Pr(B | A) Pr(A) / Pr(B) --- Bayes’ Rule
• If A and B are independent
• Pr(A ∧ B) = Pr(A)Pr(B) 
• Pr(A|B) = Pr(A)
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Simpson’s  Paradox 
Rev is i ted - 1

Graph from the Primer book



Need to understand the story behind the data—the causal mechanism generated, 
the results we see.
Need to look at age-segregated data and compare people with same age
People who exercise more have high cholesterol due to their age not due to 
exercising

Simpson’s  Paradox 
Rev is i ted

Age

Exerc. Chols.



Simpson’s  Paradox 
Rev is i ted - 2

Table from the Primer book



Simpson’s  Paradox 
Rev is i ted - 2

Table from the Primer book

Estrogen has a negative effect on recovery –
women are less likely to recover & women 
are likely to take the drug more
Why does the drug look harmful overall? If 
we select a person at random, more likely to 
be a woman, hence less likely to recover

Gender

Drug Recovery



Review: Directed Acyclic Graphs

H

G X

D

O

(HIDDEN/
UNOBSERVED) 
FACTORS

GENDER

QUALIFICATION

DEPARTMENT

OUTCOME of ADMISSION

• Parent
• H is a parent of X

• Child
• X is a child of H

• Ancestor
• H is an ancestor of D

• Descendant
• D is a descendant of H

• Path (directed & 
undirected)
• Directed: H → X → D → O
• Undirected: X – D – G – H

Default assumption

8



Next: Concepts from (Directed) 
Graphical Models

H

G X

D

O

(HIDDEN) 
FACTORS

GENDER

QUALIFICATION

DEPARTMENT

OUTCOME of ADMISSION

Inferring conditional independence 
when events are nodes
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Q. What do you remember about 
conditional independence in 
Bayesian Network?



Review: Bayesian Network

H

G X

D

O

(HIDDEN) 
FACTORS

GENDER

QUALIFICATION

DEPARTMENT

OUTCOME of ADMISSION 10

In Bayesian Networks:
A node is conditionally independent 
of its non-descendants given its parents

Joint distributions can be factorized
Pr(H,  G, X, D, O) 
= Pr(O | DXGH) Pr(DXGH)
= Pr(O |DX) Pr(DXGH)
= Pr(O|DX) Pr(D|GXH) Pr(GXH)
= Pr(O|DX) Pr(D|GX) Pr(GXH)
= Pr(O|DX) Pr(D| GX) Pr(G|XH)Pr(XH)
= Pr(O|DX) Pr(D | GX) Pr(G|H) Pr(XH)
= Pr(O|DX) Pr(D | GX) Pr(G|H) 

Pr(X|H) Pr(H)



Review: Bayesian Network

H

G X

D

O

(HIDDEN) 
FACTORS

GENDER

QUALIFICATION

DEPARTMENT

OUTCOME of ADMISSION 11

In Bayesian Networks (DAGs):
Joint distribution can be expressed as
Products of Pr(xi | pai), where 
pai  denotes the parents of xi

Joint distributions can be factorized
Pr(H,  G, X, D, O) 
= Pr(O|DX) Pr(D|GX) Pr(G|H) 

Pr(X|H) Pr(H)

Product decomposition



Directed Graphical Models generalize Bayesian 
Networks

Next – Chain, Fork, Collider
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We won’t cover conditional independence in 
undirected graphical models in this course



Chains

A

B

C

Chain

A & C are (likely) correlated
A & C are independent conditioned on B
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Conditional independence in chains:
Two variables A & C are conditionally independent given B
If there is only one unidirectional path between A & C
And B is any set of variables that intercepts that path

A

B

C

D

e.g., 
Switch -> circuit state -> light bulb on



Forks

B

A C
Fork

A & C are correlated
A & C are independent conditioned on B

14

Conditional independence in forks:
If a variable B is a common cause of variables A & C, and 
there is only one path between A & C,
Then A & B are conditionally independent given B



Colliders
A C

BCollider

A & C are independent
A & C are correlated conditioned on B 
or any descendant of B
(B “explains away” A & C)
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Example:
A, C: Random unbiased coin tosses independent 
of each other
B: Ring a bell if A = C = Head or A = C = Tail

Pr(C = Head) = ½ = Pr(C = Head | B = rings)
Pr(C = Head | A = Head, B = rings) = 1
Pr(C = Head | A = Tail, B = rings) = 0

A C

BCollider

D



Chain, Fork, Collider: Summary

B

A C

A C

B

A

B

C

Chain Fork Collider

A & C are correlated
A & C are independent conditioned on B

A & C are independent
A & C are correlated conditioned on B
or any descendant of B
(B “explains away” A & C) 16



Blocking a path

A (undirected) path p is blocked by a 
set of nodes Z if 

• P contains a chain of the form 
A→B→C, or a fork of the form 
A←B→C such that B∈Z, 
or

• p contains a collider node B of the 
form A → B ← C such that neither B 
nor any descendants of B is in Z. 

A

B

C

B

A C

A C

B

H

G X

D

O
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Blocking a path

A path p is blocked by a set of nodes Z if 

• P contains a chain of the form 
A→B→C, or a fork of the form 
A←B→C such that B∈Z, 
or

• p contains a collider node B of the 
form A → B ← C such that neither B 
nor any descendants of B is in Z. 

A

B

C

B

A C

A C

B

H

G X

D

O
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Blocking a path

A path p is blocked by a set of nodes Z if 

• P contains a chain of the form 
A→B→C, or a fork of the form 
A←B→C such that B∈Z, 
or

• p contains a collider node B of the 
form A → B ← C such that neither B 
nor any descendants of B is in Z. 

A

B

C

B

A C

A C

B

H

G X

D

O X blocks the path H – X  – D – O
G blocks the path D – G – H – X 
D unblocks the path H – G – D – X
{DG} blocks the path H – G – D – X 19



d-Separation

If a set of nodes Z blocks every path 
between two nodes X and Y, then X and 
Y are d-separated conditioned on Z

A

B

C

B

A C

A C

B

H

G X

D

O

H and D are d-separated by {XG}
G and X are d-separated by {H}
G and X are NOT d-separated by {HD}
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d-Separation and Conditional Independence

If a set of nodes Z blocks every path 
between two nodes X and Y, then X and 
Y are d-separated conditioned on Z

H

G X

D

O

H and D are d-separated by {XG}
G and X are d-separated by {H}
G and X are NOT d-separated by {HD}

A probability distribution Pr and DAG G are Markov 
compatible: if X and Y are d-separated conditioned on Z, 
then X and Y are also conditionally independent given Z in Pr

H and D are conditionally independent given {XG}

Special case: Independence in Bayesian Network: 
A node is conditionally independent of its non-descendants given its parents 21



Example-2 of d-separation

Z X

W

Y
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Consider nodes Z and Y

Are they d-separated 
1. unconditionally?
2. Conditioned on {W}?
3. Conditioned on {U}?
4. Conditioned on {W, X}?

U



Example-2 of d-separation

Z X

W

Y

23

Consider nodes Z and Y

Are they d-separated 
1. unconditionally?
2. Conditioned on {W}?
3. Conditioned on {U}?
4. Conditioned on {W, X}?

U

yes
no

no
yes



Example-3 of d-separation

Z X

W

Y
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Consider nodes Z and Y

Are they d-separated 
1. unconditionally?
2. Conditioned on {W, X}?
3. Conditioned on {T}?
4. Conditioned on {T, W}?
5. Conditioned on {T, W, X}?U

T



Example-3 of d-separation

Z X

W

Y

25

Consider nodes Z and Y

Are they d-separated 
1. unconditionally?
2. Conditioned on {W, X}?
3. Conditioned on {T}?
4. Conditioned on {T, W}?
5. Conditioned on {T, W, X}?U

T

no

yes

yes
no

no



Structural, Graphical, and 
Probabilistic Causal Models
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Main reference used here



Structural Causal Model

• M = ⟨U, V, F⟩
• a set of observable or endogenous variables V that are 

inside the model, 
• a set of noise or exogenous variables U that are outside 

of the model, and 
• a set of structural equations F, one FX for each 

endogenous variable X ∈V The structural equations 
assign every endogenous variable a value based on 
other endogenous and exogenous variables. 

• FX : Dom(PaV(X)) × Dom(PaU(X)) → Dom(X)

Endogenous 
parents of X

Exogenous 
parents of X

Domain
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Structural Causal Model as a 
Graphical Causal Model

UG

G

X

D

O

UX

UD

UO

• M = ⟨U, V, F⟩
• Endogenous (observable) 

variables V = {G, X, D, O}
• Exogenous (noise) variables 

U = {UG, UX, UD, Uo}
• Structural equations F:
{G = FG(UG),
X = Fx(Ux, G),
D = FD(UD, G, X),
O = FO(UO, X, D)}

Quantitative

Corresponding
Graphical Causal Model

Can be linear, exp, …

Qualitative
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Structural Causal Model as a 
Graphical Causal Model

UG

G

X

D

O

UX

UD

UO

Corresponding
Graphical Causal Model

D is a “direct cause” of O

G is a “cause” of O
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Structural/Graphical Causal Model 
to Probabilistic Model

UG

G

X

D

O

UX

UD

UO

• <M, Pr>
• M is a Structural Causal Model
• Pr is the Probability distribution

• Satisfies Causal Markov Condition 
• Conditional independence in directed 

graphical models

• Pr(X1, X2, ….) = ∏i Pr(Xi | Pa(Xi))

If we knew the values of the exogenous variables and the
structural equations in F, we exactly know the values of 
endogenous V

But not in practice – so assume a probability distribution 
Pr(U = u), which gives a Pr distribution on V
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Model for “Intervention” and 
“Counterfactuals”
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Intervention (do-operators) 
and Counterfactuals
Intervention: 
Change the reality by setting X to x: or X←x
• Modeled by do-operator
• Pr(Y = y | do(X = x))

Counterfactuals: 
• “If X was set to x, what would have been the value 

of Y”
• Y X=x (or Yx) = y
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do-operators vs. conditional probabilities

Pr(O = yes | X = MS): 
probability of admission if it 
has been “observed” that the 
qualification is MS degree

H

G X

D

O

Pr(O = yes | do(X = MS)): 
probability of admission if 
we have an intervention on 
the world and “force” the 
degree to be MS

H

G X

D

O

MS

X = f(H) changes to
X = MS
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Conditioning Intervention



Observational Study by Pearl’s Model

H

G X

D

O

H

G X

D

O

MS
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Conditioning InterventionGoal:
Express causal 
relationship as do-
operators
to
conditional 
probabilities

• Need
1. A valid causal DAG
2. Graph Surgery
3. Observed Data


