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Current Problem: Black Box Model vs. Trustworthy Model 

- Machine learning models: mostly black boxes
- “Powerful, high performance?”  “Yes!”
- “Do you trust this model?” “Umm…”
- “Do you really want to use this model for decision making?”    “Not really…”
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The Case for Explanations 

- 1) Trusting a prediction 

Why?
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Question:
Generally speaking, 

what can make you trust a 
prediction?



The Case for Explanations 

- 1) Trusting a prediction 
- Qualitative understanding of the relationship between the instance’s components and the 

model’s prediction.

Why?
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The Case for Explanations 

- 1) Trusting a prediction 
- Qualitative understanding of the relationship between the instance’s components and the 

model’s prediction.
- Example

Why?

Figure 1 
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The Case for Explanations 

- 2) Trusting a model 
- ML applications: requires a certain measure of overall trust 
- ML practitioners: “a lot of alternatives…which one to choose?”

- Example

Why?
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The Case for Explanations 
Why?

Figure 2 
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The Case for Explanations 
Why?

Figure 2 

17

Question:
Which one is better?



Desired Characteristics for Explainers

- Interpretable
- i.e. provide qualitative understanding between the input variables and the response
- Must consider the user’s limitations 

- A linear model may not be interpretable…

Why?

18

Why?



Desired Characteristics for Explainers

- Interpretable
- i.e. provide qualitative understanding between the input variables and the response
- Must consider the user’s limitations 

- A linear model may not be interpretable
- Local fidelity

- i.e. explanation must correspond to how the model behaves in the vicinity of the instance 
being predicted 

Why?

19



Desired Characteristics for Explainers

- Interpretable
- i.e. provide qualitative understanding between the input variables and the response
- Must consider the user’s limitations 

- A linear model may not be interpretable
- Local fidelity

- i.e. explanation must correspond to how the model behaves in the vicinity of the instance 
being predicted 

- Model-agnostic 
- An explainer should be able to explain any model

Why?

20



Desired Characteristics for Explainers

- Interpretable 
- i.e. provide qualitative understanding between the input variables and the response
- Must consider the user’s limitations 

- A linear model may not be interpretable
- Local fidelity

- i.e. explanation must correspond to how the model behaves in the vicinity of the instance 
being predicted 

- Model-agnostic 
- An explainer should be able to explain any model

- Global perspective
- A good explainer should provide a global perspective so as to ascertain trust in the model

- Explain the model

Why?
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What



Proposed Solution 

- Trustworthy predictions
- Local Interpretable Model-Agnostic Explanations (LIME)
- Overall goal of LIME: identify an interpretable model over the interpretable representation 

that is locally faithful to the classifier

What?
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Proposed Solution 

- For trustworthy predictions
- Local Interpretable Model-Agnostic Explanations (LIME)
- Overall goal of LIME: identify an interpretable model over the interpretable representation 

that is locally faithful to the classifier
- For trustworthy models

- Submodular Optimization-LIME (SP-LIME)
- Key ideas of SP-LIME: Choose a set of representative instances with explanations to 

address the “trust the model” problem, via submodular optimization

What?
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Local Interpretable Model-Agnostic Explanations(LIME)

- Key idea in one sentence
- For a prediction of a given individual, we learn 

a explainable model (e.g. linear models, 
decision trees) that uses interpretable 
representations to generate the prediction 
which mimic the local behaviors of the 
original black-box model (in terms of prediction 
results), while controlling the complexity of 
the learned explainable model.

What?
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Submodular Pick For Explaining Models(SP-LIME)

- Key idea in one sentence 
- Wait ! ! What is submodular ? ? 

- Submodular optimization is…

What?
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Submodular Pick For Explaining Models(SP-LIME)

- Key idea in one sentence 
- Wait ! ! What is submodular ? ? 

- Submodular optimization is…
- Key idea:

- Based on the explanations that accompany each prediction, this method pick a 
diverse, representative set of explanations to show the user - i.e. non-redundant 
explanations that represent how the model behaves globally.

What?
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How



A Closer Look: A Toy Example (LIME)

- Text classifier: 
- Classify a given personal comment to “good” (as 1) or “bad” (as 0).
- Learned black-box classifier: f

- Interpretable Data Representation

How?

Raw Input: 

“You are a very nice 
person” (Label: 1)

Features: Word 
embedding (Feed into 
the original model)

(0.123, -0.982), (-0.672, 0.251), 
(0.464, 0.294), (0.456, -0.627), 
(0.111, 0.957), (-0.832, -0.517)

Interpretable 
representation: Binary 
vector indicating the 
presence or absence of a 
word (Feed into the 
explainable model)

0 0 0 0 0 0

x x’
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- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x’ uniformly at random

How?

Raw Input: 

“You are a very 
nice person” 

(Label: 1)

Features: Word embedding 
(Feed into the original model)

(0.123, -0.982), (-0.672, 0.251), 
(0.464, 0.294), (0.456, -0.627), 
(0.111, 0.957), (-0.832, -0.517)

Interpretable representation: 
Binary vector indicating the 
presence or absence of a word 
(Feed into the explainable 
model)

0 0 0 0 0 0

x x’

A Closer Look: A Toy Example (LIME)
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- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x’ uniformly at random

How?

Raw Input: 

“You are a very 
nice person” 

(Label: 1)

Features: Word embedding 
(Feed into the original model)

(0.123, -0.982), (-0.672, 0.251), 
(0.464, 0.294), (0.456, -0.627), 
(0.111, 0.957), (-0.832, -0.517)

Interpretable representation: 
Binary vector indicating the 
presence or absence of a word 
(Feed into the explainable 
model)

0 0 0 0 0 0

x x’

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here
Number of such draw: Uniformly sampled. Assume ~ U(2,4) here

A Closer Look: A Toy Example (LIME)
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- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x’ uniformly at random

How?

Raw Input: 

“You are a very 
nice person” 

(Label: 1)

Interpretable representation: 
Binary vector indicating the 
presence or absence of a word 

0 0 0 0 0 0

x’

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here
Number of such draw: Uniformly sampled. Assume ~ U(2,4)

Perturbed sample: 
Interpretable binary vector 
indicating the presence or 
absence of a word (Feed 
into the explainable 
model)

z1’: 0 1 1 0 0 0

z2’: 0 0 1 1 1 0 

z3’: 1 0 0 1 0 0 

z4’: 1 1 1 1 0 0 

z5’: 0 1 0 1 1 0

A Closer Look: A Toy Example (LIME)
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- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x’ uniformly at random

How?

Raw Input: 

“You are a very 
nice person” 

(Label: 1)

Interpretable representation: 
Binary vector indicating the 
presence or absence of a word 

0 0 0 0 0 0

x’

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here
Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z’ → f(z)

E.g. z’ = 111100 → z: word vector of “You are a very”
          : Proximity measure between an instance z to x (define 
the locality around x)

Perturbed sample: 
Interpretable binary vector 
indicating the presence or 
absence of a word (Feed 
into the explainable 
model)

z1’: 0 1 1 0 0 0

z2’: 0 0 1 1 1 0 

z3’: 1 0 0 1 0 0 

z4’: 1 1 1 1 0 0 

z5’: 0 1 0 1 1 0

A Closer Look: A Toy Example (LIME)
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- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x’ uniformly at random

How?

Raw Input: 

“You are a very 
nice person” 

(Label: 1)

Interpretable representation: 
Binary vector indicating the 
presence or absence of a word 

0 0 0 0 0 0

x’

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here
Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z’→ f(z)

E.g. z’ = 111100 → z: word vector of “You are a very”
          : Proximity measure between an instance z to x (define 
the locality around x)

Perturbed sample: 
Interpretable binary vector 
indicating the presence or 
absence of a word (Feed 
into the explainable 
model)

z1’: 0 1 1 0 0 0

z2’: 0 0 1 1 1 0 

z3’: 1 0 0 1 0 0 

z4’: 1 1 1 1 0 0 

z5’: 0 1 0 1 1 0

Z ←  {}

Z ← Z U (z1’, f(z1), πx(z1)).

Z ← Z U (z2’, f(z2), πx(z2)).

Z ← Z U (z3’, f(z3), πx(z3)).

Z ← Z U (z4’, f(z4), πx(z4)).

Z ← Z U (z5’, f(z5), πx(z5)).

A Closer Look: A Toy Example (LIME)
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- Sparse Linear Explanations

How?

Raw Input: 

“You are a 
very nice 
person” 

(Label: 1)

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z’

E.g. z’ = 111100 → z: “You are a very”
           : Proximity measure between an instance z to x (define the locality 
around x)

Perturbed sample: 
Interpretable binary vector 
indicating the presence or 
absence of a word (Feed 
into the explainable model)

z1’: 0 1 1 0 0 0

z2’: 0 0 1 1 1 0 

z3: 1 0 0 1 0 0 

z4’: 1 1 1 1 0 0 

z5’: 0 1 0 1 1 0

Z ←  {}

Z ← Z U (z1’, f(z1), πx(z1)).

Z ← Z U (z2’, f(z2), πx(z2)).

Z ← Z U (z3’, f(z3), πx(z3)).

Z ← Z U (z4’, f(z4), πx(z4)).

Z ← Z U (z5’, f(z5), πx(z5)).

Explainable model g: 
    Choose linear models here
Dataset: 
    Z (contains data & label & additional distance 
metric)

A Closer Look: A Toy Example 
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- Sparse Linear Explanations

How?

Raw Input: 

“You are a 
very nice 
person” 

(Label: 1)

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z’

E.g. z’ = 111100 → z: “You are a very”
           : Proximity measure between an instance z to x (define the locality 
around x)

Perturbed sample: 
Interpretable binary vector 
indicating the presence or 
absence of a word (Feed 
into the explainable model)

z1’: 0 1 1 0 0 0

z2’: 0 0 1 1 1 0 

z3: 1 0 0 1 0 0 

z4’: 1 1 1 1 0 0 

z5’: 0 1 0 1 1 0

Z ←  {}

Z ← Z U (z1’, f(z1), πx(z1)).

Z ← Z U (z2’, f(z2), πx(z2)).

Z ← Z U (z3’, f(z3), πx(z3)).

Z ← Z U (z4’, f(z4), πx(z4)).

Z ← Z U (z5’, f(z5), πx(z5)).

Explainable model g: 
    Choose linear models here
Dataset: 
    Z (contains data & label & additional distance 
metric)
Objective function:

    Ω(g): A measure of complexity (as opposed to 
interpretability)

Explanation:

     (Corresponding weight for each feature)

Local fidelity Interpretability 

A Closer Look: A Toy Example 

36



A Closer Look: A Toy Example

- Sparse Linear Explanations

How?
N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z’

E.g. z’ = 111100 → z: “You are a very”
           : Proximity measure between an instance z to x (define the locality 
around x)

Local fidelity Interpretability 

For the toy example:
    Choose K-Lasso to limit # of explanations (K=3), i.e. 
we can only choose up to 3 words here for explanationExplainable model g: 

    Choose linear models here
Dataset: 
    Z (contains data & label & additional distance 
metric)
Objective function:

    Ω(g): A measure of complexity (as opposed to 
interpretability)

Explanation:

     (Corresponding weight for each feature)

Explainable model g vs original model f

37

Explanation:

Nice 0.96
Very 0.56
You 0.43



A Closer Look: A Toy Example

- LIME Algorithm

How?

A Closer Look: A Toy Example (LIME)
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A Closer Look: A Toy Example 

- More examples

How?

A Closer Look: A Toy Example (LIME)
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A Closer Look: A Toy Example 

- Submodular Pick for Explaining Models
- Explanations generated for x1, x2,...xn
- Key idea: Pick a diverse, representative set of explanations to show the user

How?

A Closer Look: A Toy Example (SP-LIME)
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A Closer Look: A Toy Example 

- Submodular Pick for Explaining Models
- Explanations generated for x1, x2,...xn
- Key idea: Pick a diverse, representative set of explanations to show the user

- How to find such a set
- We don’t want to show hundreds of instances (What a nightmare…)

- Budget is needed: B

How?

A Closer Look: A Toy Example (SP-LIME)
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A Closer Look: A Toy Example 

- Submodular Pick for Explaining Models 
- Explanations generated for x1, x2,...xn
- Key idea: Pick a diverse, representative set of explanations to show the user

- How to find such a set
- We don’t want to show hundreds of instances (What a nightmare…)

- Budget is needed: B
- We don’t want a redundant explanation set

- Redundant…?
- We want to have a representative set of explanations

- Create Importance function: I

How?

A Closer Look: A Toy Example (SP-LIME)
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A Closer Look: A Toy Example 

- Should have budget: B
- Should maximize the interpretable representation diversity
- Should have a representative set

- Using importance function: I

How?

A Closer Look: A Toy Example (SP-LIME)

43



A Closer Look: A Toy Example 

- Should have budget: B
- Should maximize the interpretable representation diversity
- Should have a representative set

- Using importance function: I

How?

A Closer Look: A Toy Example (SP-LIME)

Explanation matrix: W (n*d’) 
Represent the local importance 

of the interpretable components for 
each instance
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A Closer Look: A Toy Example 

- Should have budget: B
- Should maximize the interpretable representation diversity
- Should have a representative set

- Using importance function: I

How?

A Closer Look: A Toy Example (SP-LIME)

Toy example: 

Row: Different sentences/text 
(Individual instance)
Column: Features 

Explanation matrix: W (n*d’) 
Represent the local importance 

of the interpretable components for 
each instance
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A Closer Look: A Toy Example 

- Formalize the non-redundant coverage with importance function  

How?

A Closer Look: A Toy Example (SP-LIME)

46



A Closer Look: A Toy Example 

- Formalize the non-redundant coverage with importance function  

- Pick problem:
- Goal is to achieve highest coverage

How?

A Closer Look: A Toy Example (SP-LIME)
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A Closer Look: A Toy Example 

- Submodular Pick for Explaining Models

How?

A Closer Look: A Toy Example (SP-LIME)
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Demonstration



Experiments

- Stimulated user experiment
- Are explanation faithful to the model?

Demonstration 

Figure 3
50

- Should I trust this prediction?

Table 1

- Can I trust this model?

Figure 4



Experiments

- Evaluation with human subjects
- Can user select the best classifier?

Demonstration 

Figure 5
51

- Can non-experts improve a classifier?

- Do explanations lead to insights?

Figure 6

Figure 7

Table 2



Conclusion

- Argument
- Argued that trust is crucial for effective human interaction with ML systems
- Explaining individual predictions is important in assessing trust

- Proposed LIME: 
- a modular and extensible approach to faithfully explain the predictions of any model in an 

interpretable manner
- Introduced SP-LIME: 

- a method to select representative and non-redundant predictions, providing a global view of 
the model to users

Conclusion  
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 Future Work

- A comparative study on different explainable models with real users
- Address the limitation of how to perform the pick up for images
- Explore a variety of applications like speech, video, recommendation 

systems, and medical domains
- Explore theoretical properties (such as the appropriate number of samples) 

and computational optimization

Future Work 
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Anchors: High-Precision 
Model-Agnostic Explanations

Ribeiro et al. (2018) 



Problem with LIME

- unclear coverage ← unclear when an explanation applies to unseen case
- e.x. the word ‘not’ have opposite meanings based on its context  

- this leads to worse human precision 

Explanation given for sentiment analysis: User prediction on unseen case: 

“This movie is not very good”

55

What can go wrong?



Problem with LIME

- unclear coverage ← unclear when an explanation applies to unseen case
- e.x. the word ‘not’ have opposite meanings based on its context  

- this leads to worse human precision 

Explanation given for sentiment analysis: User prediction on unseen case: 
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Introducing… Anchors

- Anchors: a rule (if… then statements) such that when the anchor holds, the 
prediction stays the same with high probability

Example anchor  for 
given instance

57



Why Anchors?

1. Intuitive: Easy for users to understand if… then statements 
2. Clear Coverage: Very clear when & where explanations apply   
3. High Precision: By design, users can accurately predict model behavior

Example anchor  for 
given instance
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Notations 😫 

Given a black box model f : X → Y and instance x ∈ X, the goal of explanations is 
to explain the behavior of f(x) to a user. 

In LIME, we obtain local, model-agnostic explanations by perturbing instance x 
using perturbation distribution Ɗx (noted as Ɗ for simplicity)

instance x perturbation Ɗ
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Notations 😫 

Given a black box model f : X → Y and instance x ∈ X, the goal of explanations is 
to explain the behavior of f(x) to a user. 

For given instance x, rule (predicate set) A, and conditional distribution Ɗ(•|A), we 
can obtain perturbed samples z where A still holds  

instance x, 
where f(x) = positive

conditional distribution Ɗ
(•|A) ← set of perturbed 
samples where A applies 

Rule A, where A(x) = 1 if 
rule applies for x
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Theoretical Definition of Anchors

Anchors: a rule (if… then statements) such that when the anchor holds, the 
prediction stays the same with high probability

- Rule A is an anchor if a) the rule applies for the given instance x, and b) if the 
model prediction stays the same for most perturbed samples z from Ɗ(z|A)

for each perturbation of x 
where rule A applies
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Theoretical Definition of Anchors

Anchors: a rule (if… then statements) such that when the anchor holds, the 
prediction stays the same with high probability

- Rule A is an anchor if a) the rule applies for the given instance x, and b) if the 
model prediction stays the same for most perturbed samples z from Ɗ(z|A)

the prediction for the perturbed samples f(z) stays 
the same e.x. = f(x) with probability greater than 𝛕
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Theoretical Definition of Anchors

Anchors: a rule (if… then statements) such that when the anchor holds, the 
prediction stays the same with high probability

- Rule A is an anchor if a) the rule applies for the given instance x, and b) if the 
model prediction stays the same for most perturbed samples z from Ɗ(z|A)

and obviously, the rule 
applies for x itself
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Example Anchors –– POS tagging

- Explanations for part-of-speech tagging of the word “play”
- We want to explain why “play” was classified as verb or noun
- Define “predicate set” to be the part of speech of neighbouring words
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Example Anchors –– Machine Translation

- Explanations for english-to-portuguese translation of word “this”
- We want to explain why the word “this” was translated into esta, este, or isso
- Define “predicate set” to be presence/absence of specific tokens 

65



Example Anchors –– Tabular Datasets (Classic ML)

- Explanations for ML prediction (e.x. predict income, recidivism, loan)
- We want to explain why an individual was classified into a specific label 
- Define “predicate set” to be features in the machine learning model
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Example Anchors –– Image Classification

- Explanations for computer vision prediction (e.x. is the image of a beagle?)
- We want to explain which superpixels of the image was relevant
- Define “predicate set” to be a set of superpixels 

- Unlike LIME, we superimpose a set of superpixels onto a random image and determine if 
prediction on superimposed image meets precision criterion.   
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Our definition of anchors ensures high precision

Reminder: Given Ɗ(z|A), A is an anchor if model predictions for perturbed 
samples z are the same as that of instance x in most cases

- This is equivalent to our notion of high precision
- Recall –– “High Precision: By design, users can accurately predict model behavior” 

← e.x. explanations are generalizable to other cases (refer back to sentiment analysis case)
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Searching for an anchor – defining the problem (1/2)

- Calculating prec(A) directly is intractable, we introduce a probabilistic 
definition: anchors satisfy the precision constraint with high probability

- What if multiple anchors meet this criterion? We prefer anchors with high 
coverage: the anchor applies to a greater number of samples (more practical)
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Searching for an anchor – optimization problem (2/2)

Therefore, the search for an anchor is the same as the following optimization 
problem: for all rule A that satisfies the precision constraint, our anchor is the rule 
that maximizes coverage 

 

This is prohibitive!!
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Bottom-up (Greedy) Search

1. Start with an empty rule A = {} i.e. one that applies to all instances
2. For each iteration, find the set of all candidate rules that extend A by one 

predicate {ai} (e.x. candidate rules have one more word than current rule)
3. Identify the candidate rule with highest estimated precision, replace A with 

this candidate
4. Terminate when A satisfies the probabilistic precision constraint      
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Bottom-up (Greedy) Search

Two things to keep in mind

1. Shorter rules will generally have higher coverage; a bottom-up, greedy 
approach is inherently a proxy for maximizing coverage 

2. We estimate precision by drawing samples from Ɗ(•|A), but how do we know 
how many samples is appropriate? 
a. What is the minimal calls to f, or the fewest samples drawn from D, such that we can estimate 

which candidate rule has the highest true precision ← this is a multi-armed bandit problem
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Introducing: multi-armed bandit formulation

Wikipedia definition: the multi-armed bandit problem is a problem in which a fixed 
limited set of resources must be allocated between competing (alternative) 
choices in a way that maximizes their expected gain ← reinforcement learning

- each candidate rule is an arm, and each pull of the arm is an evaluation of 
whether f(x) = f(z) ← draw a sample from Ɗ(•|A)

- authors propose using the KL-LUCB algorithm to identify arm with highest 
precision 
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Beam Search of Anchors

Greedy approach has two shortcomings:

- Maintain a single rule at a time; suboptimal choice irreversible
- Does not directly consider coverage

Author’s Solution: Beam Search ← graph search algorithm

- given set of candidates, identify best B (w.r.t. precision) using KL-LUCB 
- generate next set of candidates from the best B of previous iteration
- among set of best B, identify best rule A* with highest coverage

- allows us to prune unnecessary candidates  
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Generalizing instance explanations to model explanations 

Like LIME, leverage submodular pick (denoted SP-Anchor) 

- identify an optimal set of anchors across validation set that best represent 
global behavior 

- selects K anchors that cover as many instances in the validation set as 
possible (i.e. highest coverage of validation set) 
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Anchor delivers higher precision on individual instances

- Anchor delivers on high precision, LIME has lower + more inconsistent 
precision values ← lack of generalizability

- Comparison of coverage between models standardized to have equal 
precision; inconclusive results generated
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Coverage of model explanations is higher with Anchor

- In real life, users prefer a set of explanations that explain most of model with 
minimal amount of effort (least # of explanations needed) 

- Given the same # of explanations, carefully curated Anchor explanations 
achieve higher coverage than LIME explanations 
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User studies show Anchor requires less time

- User studies yield similar results as simulated experiments
- We also know users make quicker (and more accurate) decisions with Anchor 

explanations
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Limitations?

1. Overly specific anchors for predictions near the decision boundary ← lower 
coverage. LIME may be better here

2. (Potentially but unlikely) conflicting anchors: in the wild, multiple anchors 
with different predictions may apply to the same instance ← unlikely given 
high precision, submodular pick algorithm

3. Generating realistic perturbation distributions that are expressive & 
interpretable (e.x. image perturbations) 
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