Explanations for ML Models LIME and ANCHOR

Keyu Li and Jason Lee March 28, 2023

CompSci 590.01presentation Duke Computer Science

LIME: "Why Should I Trust You?" Explaining the Predictions of Any Classifier

Ribeiro et al. (2016)

Table of Content

- Why ?
 - Current Problem: Black Box Model vs. Trustworthy Model
 - The Case for Explanations
 - Desired Characteristic for Explainer
- What?
 - Solution for Current Problem
 - Local Interpretable Model-Agnostic Explanations
 - Submodular Pick For Explaining Models
- How?
 - A Closer Look: A Toy Example
- Demonstration: Experiment
- Conclusion & Future Work

- Machine learning models: mostly black boxes
 - "Powerful, high performance?" "Yes!"
 - "Do you trust this model?" "Umm..."
 - "Do you really want to use this model for decision making?" "Not really..."

- Machine learning models: mostly black boxes
 - "Powerful, high performance?" "Yes!"
 - "Do you trust this model?" "Umm..."
 - "Do you really want to use this model for decision making?" "Not really..."
- Problem? Yes!
 - The important role of humans is often overlooked
 - If the users do not trust a model or prediction, they will not use it
 - E.g. Using ML classifiers as tools/deploying models within other products

- Machine learning models: mostly black boxes
 - "Powerful, high performance?" "Yes!"
 - "Do you trust this model?" "Umm..."
 - "Do you really want to use this model for decision making?" "Not really..."
- Problem? Yes!
 - The important role of humans is usually oft-overlooked
 - If the users do not trust a model or prediction, they will not use it
 - E.g. Using ML classifiers as tools/deploying models within other products
- Definition of "Trust"?
 - 1) Trusting a prediction
 - i.e. whether a user trust an individual prediction sufficiently to take some action based on it

- Machine learning models: mostly black boxes
 - "Powerful, high performance?" "Yes!"
 - "Do you trust this model?" "Umm..."
 - "Do you really want to use this model for decision making?" "Not really..."
- Problem? Yes!
 - The important role of humans is usually oft-overlooked
 - If the users do not trust a model or prediction, they will not use it
 - E.g. Using ML classifiers as tools/deploying models within other products
- Definition of "Trust"?
 - 1) Trusting a prediction
 - i.e. whether a user trust an individual prediction sufficiently to take some action based on it
 - 2) Trusting a model
 - i.e. whether the user trust a model to behave in reasonable ways if deployed

- Definition of "Trust" Examples and Explanation
 - 1) Trusting a prediction
 - i.e. whether a user trust an individual prediction sufficiently to take some action based on it
 - E.g. Medical diagnosis

- Definition of "Trust" Examples and Explanation
 - 1) Trusting a prediction
 - i.e. whether a user trust an individual prediction sufficiently to take some action based on it
 - E.g. Medical diagnosis

- E.g. Terrorism detection

- Definition of "Trust" Examples and Explanation
 - 1) Trusting a prediction
 - i.e. whether a user trust an individual prediction sufficiently to take some action based on it
 - E.g. Medical diagnosis
 - E.g. Terrorism detection
 - 2) Trusting a model
 - i.e. whether the user trust a model to behave in reasonable ways if deployed

- 1) Trusting a prediction

- 1) Trusting a prediction
 - Qualitative understanding of the relationship between the instance's components and the model's prediction.

- 1) Trusting a prediction
 - Qualitative understanding of the relationship between the instance's components and the model's prediction.
 - Example

Figure 1

- 2) Trusting a model
 - ML applications: requires a certain measure of overall trust
 - ML practitioners: "a lot of alternatives...which one to choose?"
 - Example

- Interpretable
 - i.e. provide qualitative understanding between the input variables and the response
 - Must consider the user's limitations
 - A linear model may not be interpretable...

- Interpretable
 - i.e. provide qualitative understanding between the input variables and the response
 - Must consider the user's limitations
 - A linear model may not be interpretable
- Local fidelity
 - i.e. explanation must correspond to how the model behaves in the vicinity of the instance being predicted

- Interpretable
 - i.e. provide qualitative understanding between the input variables and the response
 - Must consider the user's limitations
 - A linear model may not be interpretable
- Local fidelity
 - i.e. explanation must correspond to how the model behaves in the vicinity of the instance being predicted
- Model-agnostic
 - An explainer should be able to explain *any* model

- Interpretable
 - i.e. provide qualitative understanding between the input variables and the response
 - Must consider the user's limitations
 - A linear model may not be interpretable
- Local fidelity
 - i.e. explanation must correspond to how the model behaves **in the vicinity of** the instance being predicted
- Model-agnostic
 - An explainer should be able to explain *any* model
- Global perspective
 - A good explainer should provide a global perspective so as to ascertain trust in the model
 - Explain the model

What

Proposed Solution

- Trustworthy predictions
 - Local Interpretable Model-Agnostic Explanations (LIME)
 - Overall goal of LIME: identify an **interpretable** model over the *interpretable representation* that is **locally faithful** to the classifier

Proposed Solution

- For trustworthy predictions
 - Local Interpretable Model-Agnostic Explanations (LIME)
 - Overall goal of LIME: identify an **interpretable** model over the *interpretable representation* that is **locally faithful** to the classifier
- For trustworthy models
 - Submodular Optimization-LIME (SP-LIME)
 - Key ideas of SP-LIME: Choose a set of representative instances with explanations to address the "trust the model" problem, via submodular optimization

Local Interpretable Model-Agnostic Explanations(LIME)

- Key idea in one sentence
 - For a prediction of a given individual, we learn a explainable model (e.g. linear models, decision trees) that uses interpretable representations to generate the prediction which mimic the local behaviors of the original black-box model (in terms of prediction results), while controlling the complexity of the learned explainable model.

Submodular Pick For Explaining Models(SP-LIME)

- Key idea in one sentence
 - Wait !! What is submodular ??
 - Submodular optimization is...

Submodular Pick For Explaining Models(SP-LIME)

- Key idea in one sentence
 - Wait ! ! What is submodular ? ?
 - Submodular optimization is...
 - Key idea:
 - **Based on the explanations** that accompany each prediction, this method pick a **diverse**, **representative** set of explanations to show the user i.e. **non-redundant** explanations that represent how the model behaves **globally**.

- Text classifier:
 - Classify a given personal comment to "good" (as 1) or "bad" (as 0).
 - Learned black-box classifier: f
- Interpretable Data Representation

X

х'

Features: Word embedding (Feed into the original model)

(0.123, -0.982), (-0.672, 0.251), (0.464, 0.294), (0.456, -0.627), (0.111, 0.957), (-0.832, -0.517) Interpretable representation: Binary vector indicating the presence or absence of a word (Feed into the explainable model)

 $0\ 0\ 0\ 0\ 0\ 0$

- Sampling for local exploration
 - Sampling instances around x' by drawing nonzero elements of x' uniformly at random

Raw Input:	Features: Word embedding (Feed into the original model)	Interpretable representation: Binary vector indicating the presence or absence of a word
"You are a very nice person"	(0.123, -0.982), (-0.672, 0.251), (0.464, 0.294), (0.456, -0.627),	(Feed into the explainable model)
(Label: 1)	(0.111, 0.957), (-0.832, -0.517)	00000

- Sampling for local exploration
 - Sampling instances around x' by drawing nonzero elements of x' uniformly at random

Raw Input:	Features: Word embedding (Feed into the original model)	Interpretable representation: Binary vector indicating the presence or absence of a word
"You are a very nice person"	(0.123, -0.982), (-0.672, 0.251), (0.464, 0.294), (0.456, -0.627),	(Feed into the explainable model)
(Label: 1)	(0.111, 0.957), (-0.832, -0.517)	00000

N: # of samples. Assume N=5 here

K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume \sim U(2,4) here

- Sampling for local exploration -
 - Sampling instances around x' by drawing nonzero elements of x' uniformly at random

Number of such draw: Uniformly sampled. Assume $\sim U(2,4)$

- Sampling for local exploration
 - Sampling instances around x' by drawing nonzero elements of x' uniformly at random

- Sampling for local exploration
 - Sampling instances around x' by drawing nonzero elements of x' uniformly at random

A Closer Look: A Toy Example

- Sparse Linear Explanations

Explainable model g:

Choose linear models here

Dataset:

Z (contains data & label & additional distance metric)

N: # of samples. Assume N=5 here K: length of explanation. Assume K=3 here Number of such draw: Uniformly sampled. Assume \sim U(2,4) z: The features of the corresponding z' E.g. z' = 111100 \rightarrow z: "You are a very" $\pi_x(z)$: Proximity measure between an instance z to x (define **the locality around x**)

Raw Input: "You are a very nice person"	Perturbed sample: Interpretable binary vector indicating the presence or absence of a word (Feed into the explainable model)	Z ← {}
(Label: 1)	z1': 0 1 1 0 0 0	$Z \leftarrow Z \cup (z1', f(z1), \pi x(z1)).$
	z2': 0 0 1 1 1 0	$Z \leftarrow Z \cup (z2', f(z2), \pi x(z2)).$
	z3:100100	$Z \leftarrow Z \ U \ (z3', f(z3), \pi x(z3)).$
	z4': 1 1 1 1 0 0	$Z \leftarrow Z \ U \ (z4', f(z4), \pi x(z4)).$
	z5': 0 1 0 1 1 0	$Z \leftarrow Z U (z5', f(z5), \pi x(z5)).$
		•

A Closer Look: A Toy Example

- Sparse Linear Explanations

Explainable model g:

Choose linear models here

Dataset:

Z (contains data & label & additional distance metric)

Objective function:

 $\Omega(g)$: A measure of complexity (as opposed to interpretability)

$$\mathcal{L}(f,g,\pi_x) = \sum_{z,z'\in\mathcal{Z}} \pi_x(z) \left(f(z) - g(z')
ight)^2$$

Explanation:

$$\xi(x) = \operatorname*{argmin}_{g \in G} \ \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

Corresponding weight for each feature)

N: # of samples. Assume N=5 here K: length of explanation. Assume K=3 here Number of such draw: Uniformly sampled. Assume \sim U(2,4) z: The features of the corresponding z' E.g. z' = 111100 \rightarrow z: "You are a very" $\pi_x(z)$: Proximity measure between an instance z to x (define **the locality around x**)

Raw Input: "You are a very nice person"	Perturbed sample: Interpretable binary vector indicating the presence or absence of a word (Feed into the explainable model)	Z ← {}
(Label: 1)	z1': 0 1 1 0 0 0	$Z \leftarrow Z \cup (z1', f(z1), \pi x(z1)).$
	z2': 0 0 1 1 1 0	$Z \leftarrow Z U (z2', f(z2), \pi x(z2)).$
	z3:100100	$Z \leftarrow Z U (z3', f(z3), \pi x(z3)).$
	z4': 1 1 1 1 0 0	$Z \leftarrow Z U (z4', f(z4), \pi x(z4)).$
	z5': 0 1 0 1 1 0	$Z \leftarrow Z U (z5', f(z5), \pi x(z5)).$

A Closer Look: A Toy Example

- Sparse Linear Explanations

Explainable model g:

Choose linear models here

Dataset:

Z (contains data & label & additional distance metric)

Objective function:

min $\mathcal{L}(f, g, \pi_x) + \Omega(g)$

 $\Omega(g)$: A measure of complexity (as opposed to interpretability)

$$\mathcal{L}(f,g,\pi_x) = \sum_{z,z'\in\mathcal{Z}} \pi_x(z) \left(f(z) - g(z')
ight)^2$$

Explanation:

$$\xi(x) = \operatorname*{argmin}_{g \in G} \mathcal{L}(f, g, \pi_x) + \Omega(g)$$

(Corresponding weight for each feature)

N: # of samples. Assume N=5 here K: length of explanation. Assume K=3 here Number of such draw: Uniformly sampled. Assume \sim U(2,4) z: The features of the corresponding z' E.g. z' = 111100 \rightarrow z: "You are a very" $\pi_x(z)$: Proximity measure between an instance z to x (define **the locality around x**)

For the toy example:

Choose K-Lasso to limit # of explanations (K=3), i.e. we can only choose up to 3 words here for explanation

Explainable model g vs original model f

Explanation:

Nice 0.96 Very 0.56 You 0.43

- LIME Algorithm

```
Algorithm 1 Sparse Linear Explanations using LIMERequire: Classifier f, Number of samples NRequire: Instance x, and its interpretable version x'Require: Similarity kernel \pi_x, Length of explanation K\mathcal{Z} \leftarrow \{\}for i \in \{1, 2, 3, ..., N\} doz'_i \leftarrow sample\_around(x')\mathcal{Z} \leftarrow \mathcal{Z} \cup \langle z'_i, f(z_i), \pi_x(z_i) \rangleend forw \leftarrow \text{K-Lasso}(\mathcal{Z}, K) \triangleright with z'_i as features, f(z) as targetreturn w
```


- More examples

(a) Original Image

(b) Explaining *Electric guitar* (c) Explaining *Acoustic guitar* (

(d) Explaining Labrador

- Submodular Pick for Explaining Models
 - Explanations generated for x1, x2,...xn
 - Key idea: Pick a diverse, representative set of explanations to show the user

- Submodular Pick for Explaining Models
 - Explanations generated for x1, x2,...xn
 - Key idea: Pick a diverse, representative set of explanations to show the user
- How to find such a set
 - We don't want to show hundreds of instances (What a nightmare...)
 - Budget is needed: B

- Submodular Pick for Explaining Models
 - Explanations generated for x1, x2,...xn
 - Key idea: Pick a diverse, representative set of explanations to show the user
- How to find such a set
 - We don't want to show hundreds of instances (What a nightmare...)
 - Budget is needed: B
 - We don't want a redundant explanation set
 - Redundant...?
 - We want to have a **representative** set of explanations
 - Create Importance function: I

- Should have budget: B
- Should maximize the interpretable representation diversity
- Should have a representative set
 - Using importance function: I

- Should have **budget**: B
- Should maximize the interpretable representation diversity
- Should have a representative set
 - Using importance function: I

Explanation matrix: W (n*d') Represent the local importance of the interpretable components for each instance

- Should have budget: B
- Should maximize the interpretable representation diversity
- Should have a representative set
 - Using importance function: I

Toy example:

Row: Different sentences/text (Individual instance) Column: Features Explanation matrix: W (n*d') Represent the local importance of the interpretable components for each instance

- Formalize the non-redundant coverage with importance function

$$c(V, \mathcal{W}, I) = \sum_{j=1}^{d'} \mathbb{1}_{[\exists i \in V : \mathcal{W}_{ij} > 0]} I_j$$

- Formalize the non-redundant coverage with importance function

$$c(V, \mathcal{W}, I) = \sum_{j=1}^{d'} \mathbb{1}_{[\exists i \in V: \mathcal{W}_{ij} > 0]} I_j$$

- Pick problem:
 - Goal is to achieve highest coverage

$$Pick(\mathcal{W},I) = rgmax_{V,|V| \leq B} c(V,\mathcal{W},I)$$

- Submodular Pick for Explaining Models

```
Algorithm 2 Submodular pick (SP) algorithm
Require: Instances X, Budget B
   for all x_i \in X do
       \mathcal{W}_i \leftarrow \operatorname{explain}(x_i, x'_i)
                                                     ▷ Using Algorithm 1
   end for
  for j \in \{1 \dots d'\} do
       I_j \leftarrow \sqrt{\sum_{i=1}^n |\mathcal{W}_{ij}|} \quad \triangleright \text{ Compute feature importances}
   end for
   V \leftarrow \{\}
  while |V| < B do \triangleright Greedy optimization of Eq (4)
        V \leftarrow V \cup \operatorname{argmax}_i c(V \cup \{i\}, \mathcal{W}, I)
  end while
   return V
```

Demonstration

Demonstration

Experiments

- Should I trust this prediction?

- Stimulated user experiment
 - Are explanation faithful to the model?

	Books				\mathbf{DVDs}			
	LR	NN	\mathbf{RF}	SVM	\mathbf{LR}	NN	\mathbf{RF}	SVM
Random	14.6	14.8	14.7	14.7	14.2	14.3	14.5	14.4
Parzen	84.0	87.6	94.3	92.3	87.0	81.7	94.2	87.3
Greedy	53.7	47.4	45.0	53.3	52.4	58.1	46.6	55.1
LIME	96.6	94.5	96.2	96.7	96.6	91.8	96.1	95.6

Table 1

- Can I trust this model?

Demonstration

Experiments

- Evaluation with human subjects _
 - Can user select the best classifier? -

Can non-experts improve a classifier? =

Conclusion

- Argument
 - Argued that trust is crucial for effective human interaction with ML systems
 - Explaining individual predictions is important in assessing trust
- Proposed LIME:
 - a modular and extensible approach to faithfully explain the predictions of *any* model in an interpretable manner
- Introduced SP-LIME:
 - a method to select representative and non-redundant predictions, providing a global view of the model to users

Future Work

Future Work

- A comparative study on **different explainable models** with **real** users
- Address the limitation of how to perform the pick up for images
- **Explore a variety of applications** like speech, video, recommendation systems, and medical domains
- Explore **theoretical properties** (such as the appropriate number of samples) and **computational optimization**

Anchors: High-Precision Model-Agnostic Explanations

Ribeiro et al. (2018)

Problem with LIME

- unclear **coverage** ← unclear when an explanation applies to unseen case
 - e.x. the word 'not' have opposite meanings based on its context
- this leads to worse human precision

Explanation given for sentiment analysis:

User prediction on unseen case:

This movie is not bad.

"This movie is not very good"

What can go wrong?

Problem with LIME

- unclear **coverage** ← unclear when an explanation applies to unseen case
 - e.x. the word 'not' have opposite meanings based on its context
- this leads to worse human precision

Explanation given for sentiment analysis:

This movie is not bad.

User prediction on unseen case:

This movie is not very good.

Introducing... Anchors

- Anchors: a **rule** (if... then statements) such that <u>when the anchor holds</u>, the <u>prediction stays the same</u> with high probability

Why Anchors?

- 1. Intuitive: Easy for users to understand if... then statements
- 2. Clear Coverage: Very clear when & where explanations apply
- 3. High Precision: By design, users can accurately predict model behavior

Given a black box model $f : X \to Y$ and instance $x \in X$, the goal of explanations is to explain the behavior of f(x) to a user.

In LIME, we obtain local, model-agnostic explanations by perturbing instance **x** using perturbation distribution $\mathcal{D}_{\mathbf{x}}$ (noted as \mathcal{D} for simplicity)

instance x

perturbation ${\cal D}$

Given a black box model $f : X \to Y$ and instance $x \in X$, the goal of explanations is to explain the behavior of f(x) to a user.

For given instance **x**, rule (predicate set) **A**, and conditional distribution $\mathcal{D}(\cdot|\mathbf{A})$, we can obtain perturbed samples **z** where **A** still holds

{"not", "bad"} \rightarrow Positive

conditional distribution \mathcal{D} (•|A) \leftarrow set of perturbed samples where A applies

Rule A, where A(x) = 1 if rule applies for x

Theoretical Definition of Anchors

Anchors: a **rule** (if... then statements) such that <u>when the anchor holds</u>, the <u>prediction stays the same</u> with high probability

- Rule **A** is an anchor if a) the rule applies for the given instance **x**, and b) if the model prediction stays the same for <u>most</u> perturbed samples **z** from D(z|A)

$$\mathbb{E}_{\mathcal{D}(z|A)}[\mathbb{1}_{f(x)=f(z)}] \ge \tau, A(x) = 1.$$

for each perturbation of x where rule A applies

Theoretical Definition of Anchors

Anchors: a **rule** (if... then statements) such that <u>when the anchor holds</u>, the <u>prediction stays the same</u> with high probability

- Rule **A** is an anchor if a) the rule applies for the given instance **x**, and b) if the model prediction stays the same for <u>most</u> perturbed samples **z** from D(z|A)

$$\mathbb{E}_{\mathcal{D}(z|A)}[\mathbb{1}_{f(x)=f(z)}] \geq \tau, A(x) = 1.$$

$$(x) = 1.$$

$$(x) = 1.$$

$$(x) = 1.$$

$$(x) = 1.$$

the prediction for the perturbed samples f(z) stays the same e.x. = f(x) with probability greater than τ

Theoretical Definition of Anchors

Anchors: a **rule** (if... then statements) such that <u>when the anchor holds</u>, the <u>prediction stays the same</u> with high probability

- Rule **A** is an anchor if a) the rule applies for the given instance **x**, and b) if the model prediction stays the same for <u>most</u> perturbed samples **z** from D(z|A)

$$\mathbb{E}_{\mathcal{D}(z|A)}[\mathbb{1}_{f(x)=f(z)}] \ge \tau, A(x) = 1.$$

and obviously, the rule applies for x itself

Example Anchors — POS tagging

- Explanations for part-of-speech tagging of the word "play"
- We want to explain why "play" was classified as verb or noun
- Define "predicate set" to be the part of speech of neighbouring words

Instance	If	Predict
I want to play(V) ball.	previous word is PARTICLE	play is VERB.
I went to a play(N) yesterday.	previous word is DETERMINER	play is NOUN.
I play(V) ball on Mondays.	previous word is PRONOUN	play is VERB.

Table 1: Anchors for Part-of-Speech tag for the word "play"

Example Anchors — Machine Translation

- Explanations for english-to-portuguese translation of word "this"
- We want to explain why the word "this" was translated into esta, este, or isso
- Define "predicate set" to be presence/absence of specific tokens

English	Portuguese		
This is the question we must address	Esta é a questão que temos que enfrentar		
This is the problem we must address	Este é o problema que temos que enfrentar		
This is what we must address	É isso que temos de enfrentar		

Table 2: Anchors (in bold) of a machine translation system for the Portuguese word for "This" (in pink).

Example Anchors — Tabular Datasets (Classic ML)

- Explanations for **ML prediction** (e.x. predict income, recidivism, loan)
- We want to explain why an individual was classified into a specific label
- Define "predicate set" to be features in the machine learning model

	If	Predict
ult	No capital gain or loss, never married	$\leq 50 \mathrm{K}$
adı	Country is US, married, work hours > 45	$> 50 \mathrm{K}$
rcdv	No priors, no prison violations and crime not against property	Not rearrested
	Male, black, 1 to 5 priors, not married, and crime not against property	Re-arrested
gu	FICO score ≤ 649	Bad Loan
lendi	$649 \leq \text{FICO score} \leq 699 \text{ and } \$5,400 \leq \text{loan amount} \leq \$10,000$	Good Loan

Table 3: Generated anchors for Tabular datasets

Example Anchors — Image Classification

- Explanations for **computer vision prediction** (e.x. is the image of a beagle?)
- We want to explain which superpixels of the image was relevant
- Define "predicate set" to be a set of superpixels
 - Unlike LIME, we superimpose a set of superpixels onto a <u>random image</u> and determine if prediction on superimposed image meets precision criterion.

(c) Images where Inception predicts P(beagle) > 90%

Our definition of anchors ensures high precision

Reminder: Given $\mathcal{D}(z|A)$, A is an anchor if model predictions for perturbed samples z are the same as that of instance x in most cases

- This is equivalent to our notion of high precision
 - Recall "High Precision: By design, users can accurately predict model behavior"
 ← e.x. explanations are generalizable to other cases (refer back to sentiment analysis case)

$$\operatorname{prec}(A) = \mathbb{E}_{\mathcal{D}(z|A)} \left[\mathbb{1}_{f(x)=f(z)} \right].$$

Searching for an anchor – defining the problem (1/2)

- Calculating prec(A) directly is intractable, we introduce a **probabilistic definition**: anchors satisfy the precision constraint with high probability

 $P\left(\operatorname{prec}(A) \geq \tau\right) \geq 1 - \delta$

 What if multiple anchors meet this criterion? <u>We prefer anchors with high</u> <u>coverage</u>: the anchor applies to a greater number of samples (more practical)

 $\operatorname{cov}(A) = \mathbb{E}_{\mathcal{D}(z)}[A(z)].$

Searching for an anchor – optimization problem (2/2)

Therefore, the search for an anchor is the same as the following optimization problem: for all rule A that satisfies the precision constraint, our anchor is the rule that maximizes coverage

$$\max_{A \text{ s.t. } P(\operatorname{prec}(A) \geq \tau) \geq 1-\delta} \operatorname{cov}(A).$$

This is prohibitive!!

Bottom-up (Greedy) Search

- 1. Start with an empty rule A = {} i.e. one that applies to all instances
- For each iteration, find the set of all candidate rules that extend A by one predicate {a_i} (e.x. candidate rules have one more word than current rule)
- 3. Identify the candidate rule with highest **estimated precision**, replace A with this candidate
- 4. Terminate when A satisfies the probabilistic precision constraint

Bottom-up (Greedy) Search

Two things to keep in mind

- 1. <u>Shorter rules will generally have higher coverage</u>; a bottom-up, greedy approach is **inherently a proxy** for maximizing coverage
- 2. We estimate precision by drawing samples from D(•|A), but how do we know how many samples is appropriate?
 - a. What is the **minimal** calls to f, or the fewest samples drawn from D, such that we can estimate which candidate rule has the highest true precision ← this is a **multi-armed bandit problem**
Introducing: multi-armed bandit formulation

Wikipedia definition: the multi-armed bandit problem is a problem in which a fixed limited set of resources must be allocated between competing (alternative) choices in a way that maximizes their expected gain \leftarrow reinforcement learning

- each candidate rule is an arm, and each pull of the arm is an evaluation of whether f(x) = f(z) ← draw a sample from D(•|A)
- authors propose using the KL-LUCB algorithm to identify arm with highest precision

73

Beam Search of Anchors

Greedy approach has two shortcomings:

- Maintain a single rule at a time; suboptimal choice irreversible
- Does not directly consider coverage

Author's Solution: Beam Search ← graph search algorithm

- given set of candidates, identify best B (w.r.t. precision) using KL-LUCB
- generate next set of candidates from the best B of previous iteration
- among set of best B, identify best rule A* with highest coverage
 - allows us to prune unnecessary candidates

Generalizing instance explanations to model explanations

Like LIME, leverage **submodular pick** (denoted SP-Anchor)

- identify an optimal set of anchors across validation set that best represent global behavior
- selects K anchors that cover as many instances in the validation set as possible (i.e. highest coverage of validation set)

Anchor delivers higher precision on individual instances

- Anchor delivers on high precision, LIME has lower + more inconsistent precision values ← lack of generalizability
- Comparison of coverage between models standardized to have equal precision; inconclusive results generated

		Preci	ision	Coverage		
		anchor	lime-n	anchor	lime-t	
adult	logistic gbt nn	<u>95.6</u> <u>96.2</u> <u>95.6</u>	$\frac{81.0}{81.0}\\ \frac{79.6}{10}$	$\frac{10.7}{9.7}$ $\frac{7.6}{7.6}$	$\frac{21.6}{20.2}$ <u>17.3</u>	
rcdv	logistic gbt nn	$\frac{95.8}{94.8}\\ \underline{93.4}$	76.6 71.7 65.7	$\frac{\underline{6.8}}{\underline{4.8}}$	$\frac{17.3}{2.6}$ $\frac{1.5}{1.5}$	
lending	logistic gbt nn	<u>99.7</u> <u>99.3</u> <u>96.7</u>	<u>80.2</u> <u>79.9</u> <u>77.0</u>	$\frac{28.6}{28.4}$ 16.6	$\frac{12.2}{9.1}$ $\frac{5.4}{5.4}$ 76	

Coverage of model explanations is higher with Anchor

- In real life, users prefer a set of explanations that explain most of model with minimal amount of effort (least # of explanations needed)
- Given the same # of explanations, carefully curated Anchor explanations achieve higher coverage than LIME explanations

User studies show Anchor requires less time

- User studies yield similar results as simulated experiments
- We also know users make quicker (and more accurate) decisions with Anchor explanations

Method	Precision			Coverage (perceived)			Time/pred (seconds)					
	adult	rcdv	vqa1	vqa2	adult	rcdv	vqa1	vqa2	adult	rcdv	vqa1	vqa2
No expls	<u>54.8</u>	83.1	<u>61.5</u>	<u>68.4</u>	79.6	63.5	39.8	30.8	<u>29.8</u> ±14	<u>35.7</u> ±26	<u>18.7</u> ±20	13.9±20
LIME(1) Anchor(1)	<u>68.3</u> 100.0	98.1 97.8	<u>57.5</u> 93.0	<u>76.3</u> <u>98.9</u>	<u>89.2</u> 43.1	<u>55.4</u> 24.6	<u>71.5</u> <u>31.9</u>	$\frac{54.2}{27.3}$	$\frac{28.5 \pm 10}{13.0 \pm 4}$	$\frac{24.6 \pm 6}{14.4 \pm 5}$	$\underline{\frac{8.6}{5.4}}\pm 3$	$\frac{11.1}{3.7} \pm 8$
LIME(2) Anchor(2)	89.9 87.4	<u>72.9</u> <u>95.8</u>	-	-	$\frac{78.5}{62.3}$	<u>63.1</u> <u>45.4</u>	-	-	$\frac{37.8 \pm 20}{10.5 \pm 3}$	$24.4{\pm}7$ 19.2 ${\pm}10$	-	-

Limitations?

- Overly specific anchors for predictions near the decision boundary ← lower coverage. LIME may be better here
- (Potentially but unlikely) conflicting anchors: in the wild, multiple anchors with different predictions may apply to the same instance ← unlikely given high precision, submodular pick algorithm
- 3. Generating **realistic perturbation distributions** that are expressive & interpretable (e.x. image perturbations)