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Why?
Current Problem: Black Box Model vs. Trustworthy Model

- Definition of “Trust” - Examples and Explanation

- 1) Trusting a prediction

- i.e. whether a user trust an individual prediction sufficiently to take some action based on
it

- E.g. Medical diagnosis
- E.g. Terrorism detection

- 2) Trusting a model
- i.e. whether the user trust a model to behave in reasonable ways if deployed
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Why?
The Case for Explanations

- 1) Trusting a prediction

Question:
Generally speaking,
what can make you trust a
prediction”?
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Why?
The Case for Explanations
- 1) Trusting a prediction

- Qualitative understanding of the relationship between the instance’s components and the
model’s prediction.

13



Why?

The Case for Explanations

- 1) Trusting a prediction

Qualitative understanding of the relationship between the instance’s components and the
model’s prediction.

- Example
sneeze F'“ Explainer _sneeze | é
LIME
;vee;%r:che { N  headache | >
no fatigue no fatigue
age
Model

Data and Prediction

Explanation Human makes decision

Figure 1



Why?
The Case for Explanations

- 2) Trusting a model
- ML applications: requires a certain measure of overall trust
- ML practitioners: “a lot of alternatives...which one to choose?”
-  Example
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Why?

The Case for Explanations

Example #3 of 6

True Class: ‘ Atheism

COHCOO

Algorithm 1
Words that Al considers important:

GOD
mean
anyone
this

Koresh

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

Prediction correct:

Algorithm 2
Words that A2 considers important:

Posting
Host
Re

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

cted:

Predi
. Atheism

Prediction correct:

Figure 2
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Why?

The Case for Explanations

Example #3 of 6

True Class: ‘ Atheism

Question:
Which one is better?

Cinsructons 1 provous o 20

Algorithm 1
Words that Al considers important:
GOD

mean

anyone

this|
Koresh

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

Prediction correct:

Algorithm 2
Words that A2 considers important:

Posting
Host
Re

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

Prediction correct:

Figure 2
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Why?
Desired Characteristics for Explainers

- Interpretable
- i.e. provide qualitative understanding between the input variables and the response

- Must consider the user’s limitations
- Alinear model may not be interpretable...
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being predicted
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Why?
Desired Characteristics for Explainers

Interpretable
- i.e. provide qualitative understanding between the input variables and the response
- Must consider the user’s limitations
- Alinear model may not be interpretable
Local fidelity
- i.e. explanation must correspond to how the model behaves in the vicinity of the instance
being predicted
Model-agnostic
- An explainer should be able to explain any model

Global perspective

- A good explainer should provide a global perspective so as to ascertain trust in the model
- Explain the model
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What?
Proposed Solution

- Trustworthy predictions
- Local Interpretable Model-Agnostic Explanations (LIME)
- Overall goal of LIME: identify an interpretable model over the interpretable representation
that is locally faithful to the classifier
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What?
Proposed Solution

- For trustworthy predictions

- Local Interpretable Model-Agnostic Explanations (LIME)
- Overall goal of LIME: identify an interpretable model over the interpretable representation
that is locally faithful to the classifier

- For trustworthy models

- Submodular Optimization-LIME (SP-LIME)
- Key ideas of SP-LIME: Choose a set of representative instances with explanations to
address the “trust the model” problem, via submodular optimization
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What?

Local Interpretable Model-Agnostic Explanations(LIME)

- Key idea in one sentence

For a prediction of a given individual, we learn
a explainable model (e.g. linear models,
decision trees) that uses interpretable
representations to generate the prediction
which mimic the local behaviors of the
original black-box model (in terms of prediction
results), while controlling the complexity of
the learned explainable model.
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What?
Submodular Pick For Explaining Models(SP-LIME)

- Key idea in one sentence
Wait ! ! What is submodular ? ?
Submodular optimization is...
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What?
Submodular Pick For Explaining Models(SP-LIME)

- Key idea in one sentence
- Wait! ! What is submodular ? ?
- Submodular optimization is...
- Key idea:
- Based on the explanations that accompany each prediction, this method pick a
diverse, representative set of explanations to show the user - i.e. non-redundant
explanations that represent how the model behaves globally.
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How?

A Closer Look: A Toy Example (LIME)

Text classifier:
- Classify a given personal comment to “good” (as 1) or “bad” (as 0).
- Learned black-box classifier: f

Interpretable Data Representation

-

\

Raw Input:

“You are a very nice
person” (Label: 1)

~

/

X

~

Features: Word
embedding (Feed into
the original model)

(0.123, -0.982), (-0.672, 0.251),
(0.464, 0.294), (0.456, -0.627),
(0.111, 0.957), (-0.832, -0.517)

- /

X

ﬁitergretable \

representation: Binary
vector indicating the
presence or absence of a
word (Feed into the
explainable model)

000000

J
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How?

A Closer Look: A Toy Example (LIME)

- Sampling for local exploration

- Sampling instances around x’ by drawing nonzero elements of x” uniformly at random

-

-

Raw Input:

“You are a very
nice person”
(Label: 1)

~

J

/Features: Word embedding \

(Feed into the original model)

(0.123, -0.982), (-0.672, 0.251),
(0.464, 0.294), (0.456, -0.627),
(0.111, 0.957), (-0.832, -0.517)

- /

X

ﬂnter retable representation:
Binary vector indicating the
presence or absence of a word
(Feed into the explainable
model)

000000

-

~

/

X
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How?

A Closer Look: A Toy Example (LIME)

- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x” uniformly at random

’
/ Raw Input: \ /Features: Word embedding \ X ﬂnter L G B \ X
Kaw Input. D

Binary vector indicating th
(Feed into the original model) nary v inclicafing the
presence or absence of a word

(Feed into the explainable
model)

“You are a very

: . (0.123, -0.982), (-0.672, 0.251),
nice person

(0.464, 0.294), (0.456, -0.627),
Label: 1 0.111, 0.957), (-0.832, -
( ) (0.111, 0.957), (-0.832, -0.517) 00000

- / - / - /

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4) here




How?

A Closer Look: A Toy Example (LIME)

- Sampling for local exploration
- Sampling instances around x’ by drawing nonzero elements of x” uniformly at random

/ \ / \ , ﬁerturbed sample: \
Raw Input: I Y e X .Inte.rpr.etable binary vector
) Binary vector indicating the sampling indicating the presence or
You are a very presence or absence of a word absence of a word (Feed
nice person” into the explainable
(Label: 1) YWY model)
k / K / z1:011000
N: # of samples. Assume N=5 here 22001110

K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4) = LA

z4:111100

K z5:010110 j




How?

A Closer Look: A Toy Example (LIME)

- Sampling for local exploration

- Sampling instances around x’ by drawing nonzero elements of x” uniformly at random

ﬁerturbed sample: \

)
/ M \ /Inter retable representation: \ X
) Binary vector indicating the Sampl | ng
You are a very presence or absence of a word
nice person”
(Label: 1) v
N NG /

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z’ — f(z)

E.g. Z = 111100 — z: word vector of “You are a very”
7« (2) : Proximity measure between an instance z to x (define
the locality around x)

Interpretable binary vector
indicating the presence or
absence of a word (Feed
into the explainable
model)

z1:011000
z2:001110
z3:100100

z4:111100

K z5"010110 j
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How?

A Closer Look: A Toy Example (LIME)

- Sampling for local exploration

- Sampling instances around x’ by drawing nonzero elements of x” uniformly at random

ﬁerturbed sample: \

)
/ M \ /Inter retable representation: \ X
) Binary vector indicating the Sampl | ng
You are a very presence or absence of a word
nice person”
(Label: 1) v
N NG /

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume ~ U(2,4)
z: The features of the corresponding z'— f(z)

E.g. Z = 111100 — z: word vector of “You are a very”
7« (2) : Proximity measure between an instance z to x (define
the locality around x)

Interpretable binary vector
indicating the presence or
absence of a word (Feed
into the explainable
model)

z1:011000
z2:001110
z3:100100

z4:111100

K z5"010110 /

34



N: # of samples. Assume N=5 here

How? K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume =~ U(2,4)
z: The features of the corresponding z’

A Closer Look: A Toy Example E.2 = 111100 2:ou aro s very

7z (2): Proximity measure between an instance z to x (define the locality

around x)
- Sparse Linear Explanations /" Raw i\ / Perturbed sample:
Interpretable binary vector
A £ indicating the presence or
Explainable model g: very nice absence of a word (Feed
Choose linear models here person” into the explainable model)
Dataset: N _ (Label: 1) 212011000
Z (contains data & label & additional distance \ /
metric) 222001110
23:100100
242111100
25:010110
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How?

A Closer Look: A Toy Example

Sparse Linear Explanations

Explainable model g:
Choose linear models here
Dataset:
Z (contains data & label & additional distance
metric)
Objective function:

min L(f, g,7z) + Q2(9)

Q(g): A measure of complexity (as opposed to
interpretability)

L(f,g,m) = D ma(2) (f(2) — g(2))

z,2'€Z

Explanation:

€(z) = Brgmin L(f,9,m=) + Q(g)
g
(Corresponding weight for each feature)

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here

Number of such draw: Uniformly sampled. Assume =~ U(2,4)
z: The features of the corresponding z’
E.g. Z = 111100 — z: “You are a very”

e (z) Proximity measure between an instance z to x (define the locality
around x)

(  Raw Input:

“You are a
very nice
person”

(Label: 1)

N

ﬁerturbed sample:

Interpretable binary vector
indicating the presence or
absence of a word (Feed
into the explainable model)
z1:011000
z2:001110
z3:100100

z4:111100

z5:010110
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How?

A Closer Look: A Toy Example

Sparse Linear Explanations

Explainable model g:

Choose linear models here

Dataset:

Z (contains data & label & additional distance
metric)
Objective function:

min L(f, g,7z) + Q2(9)

Q(g): A measure of complexity (as opposed to
interpretability)

L(f,g,m) = D ma(2) (f(2) — g(2))

z,2'€Z

Explanation:
€(z) = Brgmin L(f,9,m=) + Q(g)
g
(Corresponding weight for each feature)

N: # of samples. Assume N=5 here
K: length of explanation. Assume K=3 here
Number of such draw: Uniformly sampled. Assume =~ U(2,4)
z: The features of the corresponding z’
E.g. Z = 111100 — z: “You are a very”
e (z) Proximity measure between an instance z to x (define the locality
around x)

For the toy example:
Choose K-Lasso to limit # of explanations (K=3), i.e.
we can only choose up to 3 words here for explanation

Explainable model g vs original model f

Explanation:

Nice 0.96
Very 0.56
You 0.43
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How?

A Closer Look: A Toy Example (LIME)

- LIME Algorithm

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f, Number of samples N
Require: Instance z, and its interpretable version z’
Require: Similarity kernel 7., Length of explanation K
Z +{}
for : € {1,2,3,..,N} do
z; + sample_around(z")
Z «— ZU (%, f(2i), mz(2:))
end for

w < K-Lasso(Z, K) > with z; as features, f(z) as target
return w

38



How?

A Closer Look: A Toy Example (LIME)

- More examples

(a) Original Image

Example #3 of 6

True Class: . Atheism

st [ provos Y o

Algorithm 1

‘Words that A1 iders i

GOD|

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp

Lines: 8

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

. Atheism

Prediction correct:

Algorithm 2
‘Words that A2 considers important:

Posting]
Host|

From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com
Organization: Verdix Corp

Lines: 8

Predicted:

. Atheism

Prediction correct:

(d) Explaining Labrador
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How?

A Closer Look: A Toy Example (SP-LIME)

- Submodular Pick for Explaining Models

Explanations generated for x1, x2,...xn
Key idea: Pick a diverse, representative set of explanations to show the user
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How?

A Closer Look: A Toy Example (SP-LIME)

- Submodular Pick for Explaining Models

- Explanations generated for x1, x2,...xn

- Key idea: Pick a diverse, representative set of explanations to show the user
- How to find such a set

- We don’t want to show hundreds of instances (What a nightmare...)
- Budget is needed: B
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How?

A Closer Look: A Toy Example (SP-LIME)

- Submodular Pick for Explaining Models

- Explanations generated for x1, x2,...xn
- Key idea: Pick a diverse, representative set of explanations to show the user

- How to find such a set
- We don’t want to show hundreds of instances (What a nightmare...)
- Budget is needed: B
- We don’t want a redundant explanation set
- Redundant...?
- We want to have a representative set of explanations
- Create Importance function: |

42



How?

A Closer Look: A Toy Example (SP-LIME)

- Should have budget: B
- Should maximize the interpretable representation diversity

- Should have a representative set
Using importance function: |
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How?

A Closer Look: A Toy Example (SP-LIME)

- Should have budget: B
- Should maximize the interpretable representation diversity

- Should have a representative set Explanation matrix: W (n*d’)
Using importance function: | Represent the local importance
gimp ' of the interpretable components for

each instance
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How?

A Closer Look: A Toy Example (SP-LIME)

- Should have budget: B
- Should maximize the interpretable representation diversity

- Should have a representative set Explanation matrix: W (n*d’)
Using | ¢ function: | Represent the local importance
i sing Importance tunction: of the interpretable components for

each instance
f1 f2 f3 f4 {5

g = w—

Toy example:

- sl - -y
—_— e = =

Row: Different sentences/text
(Individual instance)
Column: Features

@) () (m) () ()

ot e el e s e e
s e e e e - e
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How?

A Closer Look: A Toy Example (SP-LIME)

- Formalize the non-redundant coverage with importance function

dl
c(V,W,I) = Z Liziev:w,; >0 L;

i=1
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How?

A Closer Look: A Toy Example (SP-LIME)

- Formalize the non-redundant coverage with importance function

d,

c(V,W, I) = Z Liziev:w,,;>01d;

j=1

- Pick problem:

Goal is to achieve highest coverage

Pick(W,I) = argmax c(V, W, I)

ViIVI<B
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How?

A Closer Look: A Toy Example (SP-LIME)

- Submodular Pick for Explaining Models

Algorithm 2 Submodular pick (SP) algorithm
Require: Instances X, Budget B
for all z; € X do
W; + explain(z;, ;) > Using Algorithm
end for
for je{l...d'} do
I < />0, Wil > Compute feature importances

end for

V—{}

while |V| < B do > Greedy optimization of Eq
V « V Uargmax, c(V U {i}, W, )

end while

return V







Experiments

100

Recall (%)

Stimulated user experiment
- Are explanation faithful to the model?

~
(5]

(4]
o

N
(%]

921

72;8

17.4

=

100

78.9

~
o

97.0

37.0

Recall (%)
o
o

N
(5

=

random parzen greedy LIME

(a) Sparse LR

90.2

100

60.8 824

e

80.6

0 random parzen greedy LIME

(b) Decision Tree

75

50

Recall (%)

25 17.4

=

47.6
+

97.8

% random parzen greedy LIME

(a) Sparse LR

0 random parzen greedy LIME

(b) Decision Tree

Figure 3

- Should I trust this prediction?

Books DVDs
LR NN RF SVM LR NN RF SVM
Random 14.6 14.8 14.7 14.7 14.2 14.3 14.5 14.4
Parzen 84.0 87.6 94.3 92.3 87.0 81.7 94.2 87.3
Greedy 53.7 47.4 45.0 53.3 52.4 58.1 46.6 55.1
LIME 96.6 94.5 96.2 96.7 96.6

91.8 96.1 95.6

Table 1
- Can | trust this model?

r/: ~f— SP-LIME

~4— RP-LIME
~—4— SP-greedy
—4— RP-greedy

0 10 20 30
# of instances seen by the user

(a) Books dataset

o2}
(3
©
(33}

% correct choice
()]
[;]

H
(9}

% correct choice
()]
(4,

D
o
o

Figure 4

11

LT

~4— SP-LIME
~4— RP-LIME
—4— SP-greedy
—4— RP-greedy

10

20 30

# of instances seen by the user

(b) DVDs dataset

50



_ - Can non-experts improve a classifier?

0.8
E . t . | — SP-LIME
xperiments 5 | neime
§0.7 —— No cleaning =
[&] ~
. . . . G - Figure 6
- Evaluation with human subjects 8 | 2
- Can user select the best classifier? E
0% 1 2 3
100 Rounds of interaction
B BATPAGK (RE - Do explanations lead to insights?

8 [ Submodular Pick (RP) 8%-0 - o

.6 80 0 B R {

c .

O 80 ! 78.0

- .

3] 68.0 !

()

= I

S 60

o Figure 7

o~

40 ; - = :
greedy LIME (a) Husky classified as wolf (b) Explanation
Before After
Figure 5 Trusted the bad model 10 out of 27 3 out of 27

Snow as a potential feature 12 out of 27 25 out of 27 51

Table 2



Conclusion

- Argument

- Argued that trust is crucial for effective human interaction with ML systems
- Explaining individual predictions is important in assessing trust

- Proposed LIME:

- a modular and extensible approach to faithfully explain the predictions of any model in an
interpretable manner

- Introduced SP-LIME:

- a method to select representative and non-redundant predictions, providing a global view of
the model to users
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Future Work
Future Work

- A comparative study on different explainable models with real users

- Address the limitation of how to perform the pick up for images

- Explore a variety of applications like speech, video, recommendation
systems, and medical domains

- Explore theoretical properties (such as the appropriate number of samples)
and computational optimization

53



Anchors: High-Precision

Model-Agnostic Explanations
Ribeiro et al. (2018)



Problem with LIME

- unclear coverage < unclear when an explanation applies to unseen case
- e.x. the word ‘not’ have opposite meanings based on its context

- this leads to worse human precision

Explanation given for sentiment analysis: User prediction on unseen case:

+ This movie is not bad. “This movie is not very good”

What can go wrong?
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Problem with LIME

- unclear coverage < unclear when an explanation applies to unseen case
- e.x. the word ‘not’ have opposite meanings based on its context

- this leads to worse human precision

Explanation given for sentiment analysis: User prediction on unseen case:

+ This movie is not bad == This movie is not very good.

038
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Introducing... Anchors

- Anchors: a rule (if... then statements) such that when the anchor holds, the
prediction stays the same with high probability

+ This movie is not bad. == This movie is not very good.

{"not”, "bad"} > {"not”, "good"} >

T

Example anchor for
given instance

57



Why Anchors?

1. Intuitive: Easy for users to understand if... then statements
2. Clear Coverage: Very clear when & where explanations apply
3. High Precision: By design, users can accurately predict model behavior

+ This movie is not bad. == This movie is not very good.

{"not”, "bad"} > {"not”, "good"} >

T

Example anchor for
given instance
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Notations &
Given a black box model f : X — Y and instance x € X, the goal of explanations is
to explain the behavior of f(x) to a user.

In LIME, we obtain local, model-agnostic explanations by perturbing instance x
using perturbation distribution D_ (noted as D for simplicity)

This director is always bad.
, - This movie is not nice.
+ This movie is not bad. @ This stuff is rather honest.

This star is not bad.

instance x perturbation D
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Notations &
Given a black box model f : X — Y and instance x € X, the goal of explanations is
to explain the behavior of f(x) to a user.

For given instance x, rule (predicate set) A, and conditional distribution D(¢|A), we
can obtain perturbed samples z where A still holds

=== ‘ This audio is not bad.
+ i {"not”, "bad”} > D(.1A) | This novel is not bad.
‘ Lommmwsd This footage is not bad.
instance x Rule A, where A(x) = 1 if conditional distribution D
rule applies for x (°|A) < set of perturbed

where f(x) = positive i
samples where A applies
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Theoretical Definition of Anchors

Anchors: a rule (if... then statements) such that when the anchor holds, the
prediction stays the same with high probability

- Rule A is an anchor if a) the rule applies for the given instance x, and b) if the
model prediction stays the same for most perturbed samples z from D(z|A)

Ep(z1a)[1f()=f(z)] = 7, Az) = 1.

/

for each perturbation of x
where rule A applies
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Theoretical Definition of Anchors

Anchors: a rule (if... then statements) such that when the anchor holds, the
prediction stays the same with high probability

- Rule A is an anchor if a) the rule applies for the given instance x, and b) if the
model prediction stays the same for most perturbed samples z from D(z|A)

Ep(z1a)[Lf@)=f=z)) = 7, A(z) = 1.

\

the prediction for the perturbed samples f(z) stays
the same e.x. = f(x) with probability greater than =
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Theoretical Definition of Anchors

Anchors: a rule (if... then statements) such that when the anchor holds, the
prediction stays the same with high probability

- Rule A is an anchor if a) the rule applies for the given instance x, and b) if the
model prediction stays the same for most perturbed samples z from D(z|A)

ED(ZlA) [I]-f(x):f(Z)] Z T’ A(x) B 1. and obviously, the rule
applies for x it’self
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Example Anchors — POS tagging

- Explanations for part-of-speech tagging of the word “play”
- We want to explain why “play” was classified as verb or noun
- Define “predicate set” to be the part of speech of neighbouring words

Instance If Predict

I want to play(V) ball. gg%légg i play is VERB.
I went to a play(N) previous word is .
yesterday. DETERMINER P!ay is NOUN.
I play(V) ball on previous word is :
Mondays. PRONOUN play 15 YERD;

Table 1: Anchors for Part-of-Speech tag for the word “play”
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Example Anchors — Machine Translation

- Explanations for english-to-portuguese translation of word “this”
-  We want to explain why the word “this” was translated into esta, este, or isso
- Define “predicate set” to be presence/absence of specific tokens

English Portuguese

This is the question we must ~ Esta € a questdo que temos que
address enfrentar

This is the problem we must Este € o problema que temos
address que enfrentar

This is what we mustaddress  E isso que temos de enfrentar

Table 2: Anchors (in bold) of a machine translation system
for the Portuguese word for “This” (in pink).
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Example Anchors — Tabular Datasets (Classic ML)

- Explanations for ML prediction (e.x. predict income, recidivism, loan)
- We want to explain why an individual was classified into a specific label
- Define “predicate set” to be features in the machine learning model

If Predict
% No capital gain or loss, never married < 50K
® Country is US, married, work hours > 45 > 50K
Not pno‘rs,tno prls;)tn violations and crime Not rearrested
= not against property
£ Male, _black, 1 to.S priors, not married, Resifisstad
and crime not against property
e FICO score < 649 Bad Loan
T 649 <FICOscore <699and $5,400 < o ./
= loan amount < $10,000

Table 3: Generated anchors for Tabular datasets 66



Example Anchors — Image Classification

- Explanations for computer vision prediction (e.x. is the image of a beagle?)
- We want to explain which superpixels of the image was relevant

- Define “predicate set” to be a set of superpixels

- Unlike LIME, we superimpose a set of superpixels onto a random image and determine if
prediction on superimposed image meets precision criterion.

() Original image (b) Anchor for “beagle” (c) Images where Inception predicts P(beagle) > 90%
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Our definition of anchors ensures high precision

Reminder: Given D(z|A), A is an anchor if model predictions for perturbed
samples z are the same as that of instance x in most cases

- This is equivalent to our notion of high precision

Recall — “High Precision: By design, users can accurately predict model behavior”
«— e.X. explanations are generalizable to other cases (refer back to sentiment analysis case)

prec(A) = Ep(,a) [1f(a:)=f(2)] '
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Searching for an anchor — defining the problem (1/2)

- Calculating prec(A) directly is intractable, we introduce a probabilistic
definition: anchors satisfy the precision constraint with high probability

P(prec(A) >71)>1-9

- What if multiple anchors meet this criterion? We prefer anchors with high
coverage: the anchor applies to a greater number of samples (more practical)

cov(4) :_IED(z) [A(2)]
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Searching for an anchor — optimization problem (2/2)

Therefore, the search for an anchor is the same as the following optimization
problem: for all rule A that satisfies the precision constraint, our anchor is the rule
that maximizes coverage

max cov(A).
A st P(prec(A)>1)>1-6

This is prohibitive!!
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Bottom-up (Greedy) Search

1. Start with an empty rule A = {} i.e. one that applies to all instances

2. For each iteration, find the set of all candidate rules that extend A by one
predicate {a } (e.x. candidate rules have one more word than current rule)

3. ldentify the candidate rule with highest estimated precision, replace A with
this candidate

4. Terminate when A satisfies the probabilistic precision constraint
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Bottom-up (Greedy) Search

Two things to keep in mind

1. Shorter rules will generally have higher coverage; a bottom-up, greedy
approach is inherently a proxy for maximizing coverage
2. We estimate precision by drawing samples from D(¢|A), but how do we know

how many samples is appropriate?
What is the minimal calls to f, or the fewest samples drawn from D, such that we can estimate

which candidate rule has the highest true precision < this is a multi-armed bandit problem

a.
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Introducing: multi-armed bandit formulation

Wikipedia definition: the multi-armed bandit problem is a problem in which a fixed
limited set of resources must be allocated between competing (alternative)
choices in a way that maximizes their expected gain < reinforcement learning

- each candidate rule is an arm, and each pull of the arm is an evaluation of
whether f(x) = f(z) < draw a sample from D(¢|A)
- authors propose using the KL-LUCB algorithm to identify arm with highest

recision

precisio N V- Sy
= | |
® O

I o
& e )
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Beam Search of Anchors

Greedy approach has two shortcomings:

- Maintain a single rule at a time; suboptimal choice irreversible
- Does not directly consider coverage

Author’s Solution: Beam Search < graph search algorithm

- given set of candidates, identify best B (w.r.t. precision) using KL-LUCB
- generate next set of candidates from the best B of previous iteration

- among set of best B, identify best rule A* with highest coverage
allows us to prune unnecessary candidates
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Generalizing instance explanations to model explanations

Like LIME, leverage submodular pick (denoted SP-Anchor)

- identify an optimal set of anchors across validation set that best represent

global behavior
- selects K anchors that cover as many instances in the validation set as

possible (i.e. highest coverage of validation set)
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Anchor delivers higher precision on individual instances

- Anchor delivers on high precision, LIME has lower + more inconsistent
precision values « lack of generalizability

- Comparison of coverage between models standardized to have equal
precision; inconclusive results generated

Precision Coverage

anchor lime-n | anchor lime-t

logistic | 95.6 81.0 107 216

adult gbt 96.2 81.0 9.7 20.2

nn 95.6 79.6 7.6 1Z8

logistic | 95.8 76.6 6.8 173

redv gbt 94.8 Tl 7 4.8 2.6

nn 934 65.7 1.1 15

logistic | 99.7 80.2 28.6 122

lending gbt 99.3 199 284 9.1
nn 96.7 77.0 16.6 5476




Coverage of model explanations is higher with Anchor

In real life, users prefer a set of explanations that explain most of model with
minimal amount of effort (least # of explanations needed)

- Given the same # of explanations, carefully curated Anchor explanations
achieve higher coverage than LIME explanations
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User studies show Anchor requires less time

- User studies yield similar results as simulated experiments

- We also know users make quicker (and more accurate) decisions with Anchor

explanations

Method Precision Coverage (perceived) Time/pred (seconds)

adult rcdv vgal wvga2 adult rcdv vqal vqa2 adult rcdv vqal vqa2
No expls 548 831 615 684 796 635 398 308 |29.8+14 357426 18.7+20 13.9+20
LIME(1) 683 981 575 763 892 554 715 542 | 28.5+10 24.6+6 8.6+3 11.1+8
Anchor(1) 100.0 97.8 930 989 43.1 246 319 273 13.0+4  14.445 5442 3741
LIME(2) 899 729 - - 788 63.1 - - 37.8+20 24.447 - -
Anchor(2) 874  95.8 - - 623 454 - - 10.5+3 19.2+10 - -
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Limitations?

1. Overly specific anchors for predictions near the decision boundary < lower
coverage. LIME may be better here

2. (Potentially but unlikely) conflicting anchors: in the wild, multiple anchors
with different predictions may apply to the same instance < unlikely given
high precision, submodular pick algorithm

3. Generating realistic perturbation distributions that are expressive &
interpretable (e.x. image perturbations)
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