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Presentation Outline

e Casual Treatment Effect Estimation, Matching and Previous Works
e Almost Matching Exactly (AME)

* Dynamic Almost Matching Exactly (DAME) Algorithm

 Fast Large-Scale Almost Matching Exactly Algorithm (FLAME)

e Simulation and Performance Comparison

* Conclusion and Limitations
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Big idea

e Goal: Match the treatment and control units “almost exactly” based
on categorical covariates

* Methods:

* DAME: Considering all “needed” combinations of covariates for matching
* FLAME: Considering the covariates based on their feature importance

* Key ideas:

* Match exactly on the selected largest set of good covariates that together
predict the outcome well.

e Use the ML methods to determines the prediction quality of a set of
covariates.

 FLAME can handle large dataset
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(Conditional) Average Treatment Effect Estimation
(ATE/CATE), Matching and Previous Works
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General Treatment Effect Calculation

Average

Treatment
Effect (ATE)

Conditional
Average

Treatment
Effect (CATE)
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¢ N units, each unit could be exposed
or not to a treatment T

e Casual Effect on unit i of treatment
T defined as the difference between
the outcome

« ATE = 7 = E[Y,(1) — Y;0)]

e Measure the average
treatment effect on a
subpopulation

e CATE =1(X) = Eixex|ti]
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To calculate ATE and CATE, the most straightforward way is to use the

exact matching methodes.

In observational study, we tend
to find “identical twins” that
share exactly the same
covariates.

ATE =t = E|Y;(1) - Y;(o)]
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To calculate ATE and CATE, the most straightforward way is to use the

exact matching methodes.

In observational study, we tend
to find “identical twins” that
share exactly the same
covariates.

ATE =t = E|Y;(1) - Y;(o)]

Match the twins! .

Duke Image from the talk given by Cynthia, Alexander and Sudeepa;
https://www.youtube.com/watch?v=-So cL-eMFQ
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To calculate ATE and CATE, the most straightforward way is to use the

exact matching methodes.

We can also calculate the
conditional average treatment
effect for subgroups.

CATE = T(X) — Ei:xiEX [Ti]
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The advantages of exactly matching methods

* Unit-wise

 provide crucial information on who benefits from treatment most
* Explanability

 provide explanations for treatment effects estimates

* Explainable Feature Selection

« determine what type of additional data must be collected
* |t is especially important for the calculation of CATE
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The disadvantage of Exact Matching Methods

* In observational study, hard to

find “identical twins” that share N ﬁ 4
exactly the same covariates A /i\ /i\ (]
4\ 4\ control treated
* Yet without exact matching, have control - treated - I I
. 55 control treated
to search for other ways like ® O |

dimension reduction and ’t‘l
optimization.
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Current research on matching methods

Dimension Reduction

e Propensity Score Matching
e Doubly Robust Model
e Neural Network-based

Extension to exact matching

e Coarsened exact matching

Distance Metric Related

e Optimal matching and network flow optimization

e Mixed Integer Programming (MIP)
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The current research on

* Propensity Score Matching (Rosenbaum and
Rubin, 1983)

Duke

* Using the probability of treatment
trained by the known covariates using
logistics regression models and finding
the nearest samples in the treatment
(make sure itis 1to 1 or 1to N).

* Problem: The matching methods only
depends on the treatment and ignores
the outcome.

e(X) =Pr(Z = 1|X) = E (Z|X)
exp(BX;)

PriZi = 110 = T expBx)

[1] https://developers.google.com/machine-learning/crash-course/logistic-
regression/calculating-a-probability

[2] https://www.researchgate.net/figure/An-illustration-explaining-the-Propensity-

Score-Matching-model-Note-figure-does-not_figl 361733978

matching methods

A
//
Yy 0.5;,1""
.//
| - — | ol | | J
-6 -4 -2 0 2 4 6
Z
% o @ o - o
Populati ° e
w?:huvaa:;i?\g Q O O O O
characteristics O o
o ° ° O ) @)
0 o) © 0
Study Group with Matching
@@@® coco ----
Q@O oooo o |@@@-

O Treatment O Control

12



The current research on matching methods

* Doubly Robust Model (Hahn,2004)

W jfutcome-based * The correct label is based on both
models on outcomes and propensity
score, as one of the models has to be

sameting model  ooonme Mmodel correct to be an unbiased estimate.

(a) Weighting- and Outcome-based Estimators: ° Problem: Cannot be used for estimating
CATE (units within the matched groups
often differ on important covariates)

Covariates

e Stage 1:

* Fit a model to predict Y from W get Y

* Fit a model to predict T from W get T
Correct Correct ° Stage 2

sampling model  outcome model T e Partial out W by fitting a model to predict
Duke (b) Doubly Robust Estimator: Y — Y fromT — T
https://www.researchgate.net/figure/Properties-of-Dbfi@@tments QOutcomes 13

Robust-Estimator_fig3 364303676



The current research on matching methods

 Neural Network-based Model
(Schneeweiss, 2012)

e Use the neural network perspective
to do the dimension reduction.

* Problem: Neural networks cease to ‘
be interpretable, matches are no

longer meaningful. ‘ G

Hidden
Inputs Output(s)

https://www.whyofai.com/blog/ai-explained

Duke
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The current research on matching methods

A member can be fairly represented by properties coarsened into values or BINS thus creating a BIN signature.

¢ — EZEm
A — I
B— ¢ — DZEE
n — I
O s [N
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Propensity Score Matching
Doubly Robust Model
Neural Network-based

Coarsened exact matching(SM lacus, 2012)

e coarsening or discretizing covariates in
such a way that the newly constructed
covariates allow for exact matching

* Problem: For discrete, or binary variables,
coarsening is equivalent to variable
selection, and variable selection is hard.

Optimal matching and network flow
optimization highlight
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The current research on matching methods

A x2

Propensity Score Matching
e Doubly Robust Model

constraint

* Neural Network-based o _
objective function

e Coarsened exact matching

e Optimal matching (Rosenbaum, 1989)

) ) ) ) ) @ptinal solution
* A distance metric over variables is defined P

manually, and used as input to a network flow
problem which optimizes match quality

* Problem: cannot handle constraints

* Mixed Integer Programming : consider all possible
reasonable distance metrics (Zubizarreta,2012)

* Slow and irrelativity variables included
(toenail problem, will discuss later) x1

Duke
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Almost Matching Exactly (AME)
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Matching with a Distance Metric

 We want to find a match for each treatment unit ¢ that matches at least one
control unit on as many relevant covariates as possible.
* Consider finding matches as finding the closest unit using a certain distance metric

* Irrelevant covariates: might lead to the “toenail problem”

Covariates Heart Toenail Eyeball width
Conditions Length

Treated P1 1011 1.5cm

Controlled P2 50 1011 14cm lcm
* Naive or pre-defined distance metrics do not have domain knowledge and may

let irrelevant covariates dominate the distance.

* Learned distance metrics could learn to lay close to zero weight on toenail
covariates.
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Basic Assumptions

e Stable Unit Treatment Value (SUTVA): The treatment of one unit does
not affect the outcome of another unit.

* Overlap of Support: It requires that there is sufficient overlap in the
covariates of the treated and untreated units so that they are
comparable.

» Strong Ignorability: Y1), Y(® | T | XREL The treatment assignment is
independent of the potential outcomes given the observed covariates.

e For irrelevant covariates: Y(1),Y(® | T | X'RR qnd T 1 X'RR| XREL
* The estimated ATE is E[Y(D) — Y (O | XREL) = py(D) — y(O)|x]
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Almost Exact Matching (AME) with Fixed Weights

Almost Matching Exactly with Fixed Weights

(AME): For each treatment unit t,

6" € argmaxg, {0‘1},;,9Tw such that
36 with Ty =0 and x; 060 =x;080,

KRR

1
1

0

Duke

Male
Blue
20
Yes

No

Male

Blue

*

Yes

* Denote p: number of covariates

* let 8 € {0,1}P: a subset of
covariates to match on

* Relevance of covariate j is
denoted by w; = 0. For now
let’s just say it’s known
beforehand.

* Valid matched groups contain
at least one control unit



Dynamic Almost Matching Exactly
(DAME)

Consider Only the Case of DISCRETE Covariates From Now on
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Monotonicity of 8* in AME solutions

Almost Matching Exactly with Fixed Weights
(AME): For each treatment unit t,

f r
0" ¢ a‘rgmaxee{o‘l},ﬂrw such that
30 with Ty =0 and x,00 =x; 080,

* Any feasible vectors 8’ such that 8’ < 0 elementwise will have 8'Tw < 8Tw
e Start from 6 being all 1’s, and drop one element to zero at a time, then two, then three

* Consequently, consider feasible vectors 6 and 9’.~Define 0 as the
elementwise min(8, 8"). Then 8w < 8Tw, and 87w < 8'Tw

 Must evaluate both 8 and 8’ as possible AME solutions before evaluating 6

* For covariates set {1,2,3}, we should drop {1} and {2} before we drop {1,2}
Duke



The DAME Algorithm (with Fixed Weights)

* Designed on monotonicity property and ideas from apriori
algorithm (Agrawal and Srikant, 1994)

 apriori algorithm: Bottom-up search for frequent set mining. Frequent
subsets are extended one item at a time

* Consider “frequent” as appearing in at least 3 transactions

— tem | support_

{1,2,4}
{1,2}
{2,3,4}
2,3}
3,4}

Duke {3,4}

{1}
" {2}
3}
{4}

3
6
4
5

»
»

{1,2} 3

v

23} 3 {2,3,4} 2
{24} 4
{34} 3



The DAME Algorithm (with Fixed Weights)

* Designed on monotonicit froperty and ideas from apriori algorithm
(Agrawal and Srikant, 1994)

* Consider bottom-up search on the set of covariates we drop
* J:the original set of all covariates; p = |J|
* s: the set of covariates we drop, meaning we are matchingon J \ s

* 05 € {0, 1}?: indicator-vector, 05 ; = ljgsyvjer1,2,..p}
e the valueis 1 if the covariate is not in s, implying that it is being used for matching

* MGpy: matched groups at the end of iteration h

* A(n): active covariate-sets that are eligible to be dropped at iteration h
* Acp): processed covariates at iteration h

* Full dataset D and the unmatched subset at iteration h: D

Duke



while there 1s at least one treatment unit to match in

D(h—l) do

(find the ‘best’ covariate-set to drop from

the set of active covariate-sets)

Let s, € argmax,ey, , 0 'w (6, € {0,1}” denotes Find the optimal s within the current active set
the indicator-vector of s as in ())

if early stopping condition is met then
| Exit while loop

(D'E’,’,'),MQ(,,,)) = GroupedMR(D, D (1), J SZh)) Note that we need more than the unmatched

(find matched units and main groups) units to find newly matched units/groups
Z(n) = GenerateNewActiveSets(A 1), szh))

(generate new active covariate-sets)

T(h) = A(h,-1) N {Szh)} (remove th) from the set
of active sets) Update the processed and active covariate-sets

A(h,) = A(h) UZ(;,) (update the set of active
sets)

Apy = Ap-1) U {szh)} (update the set of

already processed covariate-sets)
Dny = Dp-1) N DE',’,',_l) (remove matches) The remaining unmatched units after iteration h
_ h=h+1
return {D{},, MG ) }n21
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A DAME Matching Example

all covariates J; p = |J| =5
I

[ |

Start with:
0 2,3,5,6,9 Ay = {{1}, ..., {53}
1 2,3,5,6,8 A = ¢
1 2,3,5,6,7
0 2,5,5,2,8
1 2,3,5,3,9
1 2,5,5,6,10
' ) 5537 Full Data D

DU_ke Let’s assume for now that wg < wy, < ws + wy < wg < -+



Round 1: Drop #5 covariate

0 2,35 6,9 s ={5},0,; = 11110
1 23,56 8 Ubdate:
1 235 6,7 Aqy = {1}, ..., {4}}
- Ay = {{5}}
0 255,28
1 2,35 3,9
et 2,55 6,10
0 2,55 3, 7
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Round 2: Drop #4 covariate

o ; =0, 101
R aEses T e
Ay = ({4}, {5}}

{ 2,5,5,2,8

D5 : unmatched - 2; 3; 5 g
units left _

1 2,5,5,6,10

— 0 2,5,5,3,7

Duke



Round 3: Drop #4 and #5 covariate

S = {41 5}; 95,]' = 11100

Update:

I

L e
Ay = {14515}, {4, 5}}

-y 22 =

I

—

D3 : unmatched
units left

Duke



Grouping Procedure

Algorithm 2: Procedure GroupedMR

Input :Data D, unmatched Data
D" c D= (X,Y,T), subset of indexes of
covariates J° ¢ {1,...,p}

Output : Newly matched units D™ using covariates
indexed by 7° where groups have at least
one treated and one control unit, and main
matched groups for D™

M, 4w — group-by (D, J*) (form groups on D by

exact matching on J*)

M = prune(M,,,,) (remove groups without at

least one treatment and one control unit)

D™ = Subset of D"" where the covariates

match with some group in M (find newly
matched units and their main matched groups)
return {D"' M} (newly matched units and main
matched groups)

Duke

* Matches all units in D to allow
for matching with
replacement!

* Meaning, if some unit is
already matched in previous
iterations, it would still appear
in the matched groups of this
iteration, but the unit itself
won’t be in the subset that’s
returned in this iteration



New Active Set Generation

Algorithm 3: Procedure GenerateNewActiveSets

. . . .
1. Input : s a newly dropped set of size k, Only generate a new active setr of size k+1 if all

A the set of previously processed sets of r’s subsets of size k have been processed.
2. Initialize: Z — & (stores new active sets) .
3. AF = {5 €A | size(8) =k} U{s} (compute all * To prune candidates, do support check
subsets of A of size k and also include s) * Support of a covariate e defined as the number
4.7 = {a | acdand § e AF} (get all the of sets in A* containing e

: : : . k
covariates contained in sets in A )

5. S, — support of covariate e in AF Example (follow line number correspondence)

: e —— — 1. s={2,3}, k=2,
6. € .{() | ae T‘. dnfl So >k} Ns (get the A= {{1).{2) (3} {5).{1.2). {1.3}. {1.5)}
covariates not in s that have enough support) 2. 7 —
7.if {Vees:S, 2.1\?} (:.f all covariates in s have 3. A% — {{1,2}.{1,3},{2,3}.{1,5})
enough support in A") then 4.T = {1,2,3,5}
8. for all «€€) (generate new active set) do 5.81=3,8=2,8=285=1
9.r=su{a} 6. Q= {1,2,3}~ {2,3} = {1}
10. if all subsets s’ c r, |s'| = k, belong to AF 7. True : both 1 and 2 have support > 2
then 8. a =1 (only one value)
11. add r to Z (add newly active set r to 9. r={2,3} u{l} ={1,2,3}
7) 10. True (subsets of r of size 2 are {1,2}, {1,3},{2,3})
11. Z = {{1,2,3})

12. return Z 12. return Z = {{1,2,3}}
Duke

Do this on whiteboard



It we don’t know the weights...

* |dea: find 8 € {0, 1}? that selects the covariates that could train
a model to predict outcome with minimum prediction error

PEz(0) = mingrE(f(X 0 6,T) — Y)?

* Denote two dataset
o gmatching _ (¥M yM TM} tha matching set
o gtraining — (x¥T yT TT} the training set
* Denote the matched group for unit i on covariates 6 from
matching set STatching.
Mgi(glsmatchmg) — {1’ = Smatchmg’s_ t'xi' 0 = X;1 o H}

Duke



Full Almost Exact Matching (Full-AME)

* For treatment unit i, match on a set of variables that minimizes empirical
PE:
B/ matcning € arg min PEx(6,Straining) s t. (3¢ € M G;(0, S™atching) . ¢. T, = 0)

e

Find set of covariates

Such that there’s at least one control unit in the

That minimizes the prediction matched group of i in the matching set

For each treatment point i o
error on the training set

Duke



DAME with Adaptive Weights

while there is at least one treatment unit to match in
D1y do

(find the ‘best’ covariate-set to drop from
the set of active covariate-sets)

Let s(;,) € argmaxgep,, , 0 w (0, ¢{0,1}? denotes
the indicator-vector of s as in ([I]))

1t early stopping condition 1s met then
| [Exit while loop

(D{}y: MG (ny) = GroupedMR(D, D(p-1), T \ $(},))
(find matched units and main groups)
Z1) = GenerateNewActiveSets(A (-1, szh))

(generate new active covariate-sets)
Ay = Agp-1) N {Szh)} (remove s(),y from the set
of active sets)
Any = Any U Z(1) (update the set of active
sets)
Apy = Ap-1) U {s’(*h)} (update the set of
already processed covariate-sets)
Dpy = D(p-1) N DE';I‘_I) (remove matches)
L h=h+1
return {D}}, MG} ns1

(h)
Duke

> szh)earg min PE(6,)

.SE."\(;,_l)

*Typically, train two separate models for treatment/control

* During iterations where we drop
covariates, the prediction error PE;
should never increase too far
above the original value using all
covariates

* i.e. PEx(6}) < min PE-(0) + €



Advantages and Disadvantages of DAME

* Advantages:
e DAME can be used to estimate CATE;

 DAME produces interpretable matches that are guarantee to be high quality
since it goes over all the possible feature combinations and matches the

controlled and treatment group.

* Disadvantages:
* Time Consuming: all the possible subsets are calculated

* Not high-dimensional friendly

Duke



Fast Large-Scale Almost Matching
Exactly Algorithm (FLAME)

An approach to match under the potential outcome framework with binary
treatments and a possibly large number of discrete covariates

Duke



FLAME Algorithm

Algorithm 1 : FLAME Algorithm

1:

20

3:
4:

at

® N >

9:
10:

Inputs Input data S™* = (X,Y,T) for matching; training set S = (X, Y T);
model classes F1, Fa, - -+, Fgq; stopping threshold ¢; tradeoff parameter C.
Outputs A sequence of selection indicators 8°,--- 8%, and a set of matched groups
{MG(0',8)}>1. > S' is defined in the algorithm.
Initialize SY = 8™ = (X,Y,T),0° = 1451,1 = 1,7un = True.
> [ is the index for iterations.
Compute exact matched groups MG (60°,S°) as defined in (1).
> The detailed implementation is in Section 4.
while run = True do
Compute 8’ using (6) on training set S, using F,;_; and tradeoff parameter C.
> Determine which covariates to match on for this iteration.
Compute matched groups MG(8'~1, S'=1) as defined in (1).
> The detailed implementation is in Section 4.

St =S\ mgei-t, s, > These matched units are done.
if PEf, ,(60',8") > PEx,(14x1,S") +¢ OR S'= & then
run = False > Prediction error is too high to continue matching.
=[4+1

Output {8!, MG(0',5)}1>1.

Duke

Step 1: Find the exact
matching group
for all features

Step 2: Match the individuals
for remained feature
with exact matching

Step 3: Find the feature
eliminated in this round

Step 4: Stop when the
Prediction Error is too high

37



Example for FLAME

* Suppose the relevance of the features for x; is x; > x, > x3 > x4

FLAME Algorithm (Backward Elimination) DAME Algorithm (apriori)

Step 1 x1 X2 X3 x4 x1 X2 X3
Step 2 x1 X2 X3 x1 X2 X3
Step 3 x1 X2 x1 X2

Step 4 x1 x1 X2

Step 5 x1 X3
Step 6 x1 X3
Step 7 x1

Step n

Duke
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Balancing Factor (BF) Criteria

~ # control in MG(0,5™") N # treated in MG(6,5™")

BF (MG 9 qgma
| " ) # available control # available treated

The objection function for FLAME is

0" € argmax[~PEp,, (6,5") + C - BF(MG(0,5™))]

* Encourages a large fraction of both treatment and control units to be
used for the matched groups and more units would be matched in
earlier iterations.

Duke
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Balancing Factor Effect

* Maximizing BF: encourage more
units to be matched in earlier
iterations (even if they have
rather large PE)

* Simulation: y = $2% -x; + 10T + ¢

 x; ~ Bernoulli(0.1 + 3G—1)

) for control

3(i-1)
190 ) for

and x; ~ Bernoulli(0.9 —
treatment, € ~ N (0,0.1)

Duke

0" € arg 111(';1,X[—PEF”0”U (0, S™) +C - BF(MG(0,5™))]

o control in MG(6, S™*)

# treated in MG(6, S™)

BF(MG(6, 5™*))

0.8
g 2
S o6 £
0 : o
= 2
n n
S04 s
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Implementation using Database (SQL) Queries

WITH tempgroups AS
(SELECT A;, Az, ---, Ap
-—(matched groups will be identified by their covartiate values)
FROM S
WHERE is matched = 0
--(use data that are not yet matched)
GROUP BY Ay, Ao, ---, A
--(create matched groups with identical wvalues of covartiates)
HAVING SUM(T) > O AND SUM(T) < COUNT(x)
--(groups have at least one treated and one control untit)
)
UPDATE S
SET ismatched = /
WHERE is matched = ( AND
EXISTS
(SELECT Q.4;, Q.4y, ---, Q.Ag
FROM tempgroups AS Q
--(set of covariate wvalues for walid groups)
WHERE Q.A; = S.A; AND Q. A, = S.Ay AND --- AND Q.Ar = S.Ap)

Duke
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Implementation using Database (SQL) Queries

N

Gender Heart Blood
Condition Pressure
1 130 | 205 W M 1 High
0 125 _— |[20s W M ! High
1 /IQ7/ _n1]30s B F 0 Normal
0 130" 30s L F 1 Low

Valid group |

Duke

) fELECT Age, Race, Gender, HC, BP,
((SUM(T*Y)/SUM(T)) — (SUM(1-T)*Y)/(COUNT(*)-SUM(T))) AS CATE
FROM Population

GROUP BY Age, Race, Gender, HC, BP
HAVING SUM(T) >= 1 AND SUM(T) <= COUNT(*) - 1
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Implementation using Bit Vectors

For the categorical data, if the & — th covariate is h(y, we first rearrange the d covariates such

that hy < hgry for all 1

1 —
< k < d—1, then we can represents b; = >, . a...l-‘kh,é‘k)l and

b =S, (Ivz,,k/‘lé‘k) + t;. and the two units ¢ and j have the same covariate values if and only

it b, = b;. and we deonote how many times b; and bf appear in the whole dataset. A unit 7 is
matched if and only if ¢; # (:1,17L since the two counts differ if and only if the same b; appears both

as a treated instance and a control instance.

first variable | second variable | T | b; | b | ¢; | ¢ | is matched?
0 2 0|6 |18 1] 1 No
1 1 04 |11 2| 1 Yes
1 0 1|13 |1]|1 No
1 1 I | 4|12 | 2 1 Yes

Duke
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A time comparison between matching methods

526.53

Method Time (hours Method Time (seconds N S e
FLAME-bit Crashed FLAME-bit 22.30 + 0.37 | e rore |
FLAME-db 1.33 FLAME-db 59.68 + 0.24 g | g

 Causal Forest Crashed Causal Forest 52.65 £+ 0.41 § a00) § 200 FLAME
1-PSNNM > 10 1-PSNNM 13.88 + 0.14 H ool H = T
Mahalanobis > 10 Mahalanobis 595.78 + 0.14 g wool -gm
GenMatch > 10 GenMatch > 150 i ool " 100
Cardinality Match > 10 Cardinality Match > 150 ) RN a5 oo

1000 2000 3000 4000 5000
number of units(p = 10 covariates)

5 6 7 & 9 10
. number of covariates(n = 3k units fixed)
Synthetic dataset
# Units = 20k
# Covanates = 30
(Averaged over three runs)

US Census 1990 dataset
# Units = 1.2 million
# Covanates = 59

Figure 3: Run-time comparison between DAME FLAME,
and brute force. Left: varying number of units. Right:
varying number of covariates.

Brute Force AME solver: Brute force pairwise

comparison of treatment points to control points.
Quadratic in number of units n, linear in
number of covariates p
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The Pros and Cons for two Implementations

* FLAME-Bit
* Use bit-vectors to find valid groups
* Uses main-memory
e Faster in smaller dataset
e Cannot handle large datasets(millions of units)

* FLAME-DB

e Use SQL queries from database

 Stores bulk of data on disk

 Less efficient than Bit vector for small datasets
e Can handle bigger data (millions of units)
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Advantages and Disadvantages of FLAME

* Advantages:

* FLAME is a greedy algorithm to find the matched group, so it is faster than
DAME.

 FLAME consider bias introduced by irrelevance covariates and introduces
balance factor (BF) to match more units.

* Disadvantages:

* The units of groups might not be perfectly matched since it is a greedy
algorithm.
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The combination of FLAME and DAME

Say only the first 9 out of 40 covariates are relevant.
Eliminate covariate subsets in this order:

t=1 40 t=large  40,39,...,13,12,11,10.,9.8,6.3

t=2 40,39 Stop iterating here — if I eliminate anything else, |
=3 40.39.38 FLAME can’t predict the outcome.

t=4 40,39,38,37 iterations

t=5 40,39,38,37,36

t=31 40,39,...,13,12,11,10
t=32 40,39,...,13,12,11,9
t=33 40,39,...,13,12,11,10.9
t=34 40,39,...,13,12,11,8
t=35 40,39,...,13,12,11,10.8
t=36 40,39,...,13,12,11,9.8
t=37 40,39,...,13,12,11,10,9.8

DAME
1terations
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Simulation and Performance Comparison

Duke



FLAME Simulation

*Yy = IZL 1 & xl‘ 21'121 Bixi|+ T - U|Z1si<js5 xixj"" €

|

Baseline linear effect |inear treatment effect quadratic (nonlinear) treatment effect

* Relevant covariates1 <i < 10: a; ~ N(10s,1), with s ~
Uniform{—1,1}; 5; ~ N(1.5,0.15); € ~ N (0, 0.1); x;~Bernoulli(0.5)

* Irrelevant covariates 10 < i < 30: a; = 8; = 0, x;~Bernoulli(0.1) in the
control group, x;~Bernoulli(0.9) in the treatment group.

* 10000 each for treatment/control units.

 Matching set generated identically with the training set
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: | g g : are subject to misspecification.
s . ¢ g
= 01 ; (= - 01t
b T b1
g =251 g g =25
= =50 = = =50 e
w w v -
w w w
: s - L 120 120
-5k « -5k ; . : -75!
0 10 20 30 0 10 20 30 0 10 20 30 5 Treatment Effect 5
True Treatment Effect True Treatment Effect True Treatment Effect g 1001 — 45 degree line g 100
w w
£ 1) C1 ¢ = U . s - Y A < c
(d) 1-PSNNM (e) Oracle 1-PSNNM, (f) Oracle 1-PSNNNMI,, o 2 o
- —
© ©
60
£ £ 40
100 200 100 100 = a0 o
] treatment effect v} ] - treatment effect G treatment effect g g 20
g 75 — 45 degree line g 150 £ 75 45 degree line g 751 45 degree line o o
w $41 g w o 9! b} 9 g 20 g 0 /
= (] = = 50 e 50 2 ] - Treatment Effect
@ ¥ 100 2 e e WS w wi A
£ E £ J — E sl feotil — -201 # —— A45degreeline
E B E — E 2 Wﬂ' 0
o n o ] ®
£ £ so g o — £ o 0 50 100 0 50 100
¥ T 3 . o True Treatment Effect True Treatment Effect
b E 0 — . = =251 E =251
§ £ _co :: Zt:;:: :::a Z =50 = —50 (a) FLAME (b) Double linear regressors
w w = w w
=75 =75
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 g . :
True Treatment Effect True Treatment Effect True Treatment Effect True Treatment Effect Flg‘;uxje 4 Scatter p'lOtS Of true treatme.nt effeCt Ve_rsuS' eStIH}ated treatment effeCt Ol @y
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DAME Simulation

-y = IZL- aixi‘+ TZi:l :Bixi + ‘T . Uzi;%y>i Xity ‘

/ | \

Baseline linear effect  linear treatment effect quadratic (nonlinear) treatment effect
® - Experiments on imbalanced data

e 2000 treatment, 40000/20000/10000 control units
 DAME: 4 covariates not matched on average,

84% matched on all but 2 covariates; Mean Squared Error (MSE)
. Ratio 1 | Ratio 2 | Ratio 3
 FLAME: 7 covariates not matched on average,
25% matched on all but 2 covariates DAME 0.47 | 0.83 1.39
FLAME 0.52 0.88 1.55

Mahalanobis 26.04 48.65 64.80
1-PSNNM 246.08 | 304.06 278.87
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Irrelevant Covariates

c y=2iax; + T Y=g Bixi + T Uiy si XiXy
* Important covariates 1 <i < 5:a; ~ N(10s, 1), with s ~
Uniform{—1, 1}; 8; ~ N(1.5,0.15); x;~Bernoulli(0.5)

* Unimportant covariates 5 < i < 15: x;~Bernoulli(0.1) in the control group,
x;~Bernoulli(0.9) in the treatment group.

e 15000 control/treatment units.

DAME early FLAME early DAME end FLAME end 1-PSNNM Mahalanobis Causal Forest

12541 00 © o
(15000, 470.84)
00 O .
2 100 A
28 9 B 50 ©
~ 00 O
7541 00 © O
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o
o)
0
Q
50 6
25 4
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Exponentially Decaying Covariates

First time at least 9000 units are matched

25 i : . e ) I . o
y — alxi + T ﬁixl _I_ T R U xixy MSE: 0.39 MSE: 0.93 %10000 8 B DAME 30%
Ezo 4 S 5000 s FLAME 30%
[ i=1 Ly, y>i . P £ 6000
. g 10 < 4000
* Let a decrease exponentially as % 5| 5
i o4 p g 20001
0 =
1 0 5 10 15 20 25 0 5 10 15 20 25 °T 18 17 16 15 14 13
al f— 64)( — True CATT number of covariates matched on
2

First time at least 15000 units are matched
o,

23| MSE: 0.54

109

mm DAME 50%
N FLAME 50%

10000 1
20

8000 -
15

* DAME produces more high-quality
matches before resorting to lower
guality matches o

895

6000 4

10
4000 1

m
m
(e}

20001 o §
0 —>- o NNO A,L

0 5 10 15 20 25 0 5 10 15 20 25 18 17 16 15 14 13
True CATT number of covariates matched on

Estimated CATT

633
1283

number of units matched

YR525
Y2406

Y2018

Figure 2: DAME makes higher quality matches early on.

Rows correspond to stopping thresholds (top row 30%,

bottom row 50%). DAME matches on more covariates than
Duke

FLAME, yielding lower MSE from matched groups.
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-LAME on Real Data: Extreme Smoking on
oirth weight

* Treatment: smoking at least 10
cigarettes per day for the
duration of the pregnancy

400

200
»

e Control Group: women who did
not smoke at all during
pregnancy

e ATE on birth weight:
e -248 grams of infant’s weight

Estimated Treatment Effect

20 40 60 80 100
Number of Treatment Units in Group

~2.1M units in total
D k ~75K units are treated units
UKE
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How to determine if an outcome is
not influenced by extreme smoking?
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Real Data: Extreme Smoking on NICU admission

« Odd ratio to test the data quality 20.0

e Conclusion: the available data are 17.5(
not sufficient for granular analysis,
or any strong conclusion on NICU

admissions.
- lyes  fno |

yes 56 () 274 (b) . X
rno 18 (c) 390 (d) —

20 40 60 80 100
Number of Treatment Units in Group

Scatter plot of odds ratios versus matched group size

Duke

56



Real Data: BTC

e Breaking The Cycle (BTC) (Harrell et al., 2006) is a social program
conducted in several U.S. states designed to reduce criminal
involvement and substance abuse among current offenders. The
effect of participating in the program on reducing non-drug future
arrest rates is studied. Table 2: Features for BTC data.

Feature

1. Live with anyone with an alcohol problem
2. Have trouble understanding in life
3
1

3. Live with anyone using non prescription drugs

4. Have problem getting along with father in life

5. Have an automobile

6. Have drivers license

7. Have serious depression or anxiety in past 30 days
8. Have serious anxiety in life

9. SSI benefit last 6 months

D| ] ke 10. Have serious depression in life
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DAME and FLAME Dropping Order

Table 3: Order in which features were processed for DAME and FLAME. The feature numbers correspond to the feature
numbers in Table 2. The number in the parenthesis corresponds to the number of units matched for the first time at that
round. Before any covariates are dropped, 287 individuals are matched on all features, which is 75% of the data.

DAME FLAME

Ist | 4: problem with father (15 new units matched) | 4 (7 units)

2nd | 5: have an automobile (9 units) 4,7 (25 units)

3rd | 7: have serious depression (24 units) 4,79 (9 units)

4th | 4,7 (3 units) 4,7.9,1 (7 units)

5th 5,7 (1 unit) 4,7,9,1,8 (12 units)

6th | 4,5 (7 units) 4,7.9,1,8,10 (6 units)

7th | 4,5,7 (0 units) 4,7,9,1,8,10,6 (5 units)
8th | 9 (8 units) 4,7,9,1,8,10,6,5 (11 units)
9th | 4,9 (0 units) 4,7,9,1,8,10,6,5,2 (5 units)
196th | 1,2,4,5 (1 unit)

 DAME is able to construct matched groups by only dropping subsets of what
FLAME drops as early as the second and third iteration of the algorithm.

DAME matches on more covariates than FLAME.
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Comparison With a Black Box Model

e CATE predictions of DAME compared

with a black box SVM that predicts 100 " o NewtflectbySm
positive, neutral, or negative effect of D TG e
each individual. 00

* The discrepancy between the two
methods could be tackled by
smoothing:

60 A

Number of Units

e units within the leftmost blue (negative) ® .
labeled matched group were much closer
gin hamming distance) to other blue 20
negative) labeled matched groups than to . s, ® o® e .
green (neutral) or red (positive) labeled o+ " e
groups -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Estimated CATE by DAME
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Conclusion and Limitations

e Conclusion:
 DAME produces interpretable matches that are of high quality.

 FLAME is a method for adaptive, interpretable, large-scale matching. The bias
of FLAME can be calculated directly in specific settings.

* Limitations:
e Continuous Variables Unfriendly (We can discretize the feature but the result

is not that accurate)
e Adaptive Hyperboxes
* Creates an adaptive axis-parallel box for continuous and discrete datasets
* MALTS — Matching After Learning to Stretch
* Creates an interpretable stretch metric
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Usage of DAME and FLAME

D k ALMOST MATCHING
UKE | exactiyias

DAME-FLAME PYTHON
PACKAGE

Home

Getting Started

API Documentation
User Guide
Examples

FAQ and Vocabulary Guide

Duke

Q Search DAME-FLAME Python Package GitHub

Welcome to the DAME-FLAME Python
Package Documentation!

Viow us o Gt

dame-flame is a Python package for performing matching for observational causal inference
on datasets containing discrete covariates. It implements the Dynamic Almost Matching Exactly
(DAME) and Fast, Large-Scale Almost Matching Exactly (FLAME) algorithms, which match
treatment and control units on subsets of the covariates. The resulting matched groups are
interpretable, because the matches are made on covariates, and high-quality, because machine
learning is used to determine which covariates are important to match on.

C  Intro to the dame-flame Python Package ° ) ~
Covariates: HEME 53

@ o

training set

FLAME will continue this process until the

remaining set of covariates can no longer be used to

aceurataly neadict tha aufcome on the training set,
EAWE: @ Voulube IL between each iteration.

* A Python Package created by
Almost Matching Exactly Lab is
presented and can be easily
installed through pypl
(https://almost-matching-
exactly.github.io/DAME-FLAME-
Python-Package/)
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Appendix: Bias in CATE
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* |f we do not match on all relevant covariates, a bias is induced on the treatment effect estimates.
Here we present a simple worst-case bound on the in-sample estimation bias when a CATE is
estimated with units matched according to a chosen subset of covariates.

: 1
Let ¢ (2) and ¢V (2) are the non random potential outcomes where ¢(M)(x;) = yl( ) and
. ()) . —_ (()) anad o o ma - T anAd o TN - .
g0 (x;) = y, . and ny(x,0,5™M) = Z»IieM(_i:(a:-.e,sma-) T; and n.(x,0,5™*) = Z‘ieMG(;]_f.e.Sm“)(1

T;) and 7(z) = gW(x) — ¢(¥(x) is the CATE estimated of interest. For a weighted Ham-
ming distance with positive weighted vector w of length p, and 0 < [|w|l2 < oo, and define
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) xr ¥
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