

Generating Explanations

for Graph Neural Networks

Jinze Cui Hanze Meng

Introduction to GNN

Definition: Data representing objects and relationships between them using nodes and edges of graphs.

Possible sources of graph data: social network, images, molecules, ...

Example: Molecules modeled as graphs.

What we want to achieve using these graph data

Solve Prediction Problems!

Three levels of prediction based on graph structure:

- **Graph Level:** For a new molecule, predict whether it is toxic or not based on information from the graph data.
- Node Level: In a social network graph, predict the likelihood that a person will develop new friendship.
- Edge Level: In a map, predict the time it will take to the destination.

Neural network models are helpful!

A refresh on (convolutional) neural network:

- For classification and pattern recognition.
- Consists of multiple layers of neurons.
- Neurons process and transmit information.

How do we predict (continued)

Particularly on convolutional neural network:

Limitations:

- For fixed-structure data, ex. 2-dimension matrix of pixels.
- CNN does not guarantee invariance on node ordering.

Graph data are not structured well.

Need a new framework to process graph data.

How does GNN work

A graph-in, graph-out structure:

- Embed feature info into nodes, edges and global context of the input graph.
- Progressively transform the embedded information through multiple layers.
- No changes on the connectivity of the input graph.

What does GNN do at each layer

- Three key computations at each layer I: message, aggregation and update.

- **Message:** A function $MSG(h_i^{l-1}, h_j^{l-1}, r_{ij})$,

 h_i^{l-1} and h_i^{l-1} are representations of nodes v_i and v_j in layer l-1,

 r_{ij} is the relation information between nodes v_i and v_j .

- **Aggregation:** A function $AGG(\{m_{ij} \mid v_j \in N_{vi}\})$,

 v_i is the node we are aggregating on,

 N_{vi} is the neighborhood of v_i ,

 m_{ij}^{J} is the message from the MSG function.

What does GNN do at each layer (continued)

- Aggregation: Some possible AGG functions are mean, max, and min.
- **Update**: A nonlinear function $UPDATE(M_{ij}^{\ /}, h_i^{\ /-1})$, $M_{ij}^{\ /}$ is the aggregated message from the MSG function, $h_i^{\ /-1}$ is the representation of node v_i in the previous layer.

Review on Paper:

GNNExplainer: Generating Explanations for Graph Neural Networks

Key insights into the paper

- Transparency is important for the following reasons:
 - Increases the trust in models themselves.
 - Avoids fairness or privacy issues.
 - Helps detect incorrect patterns before deployment.

Image Source: https://towardsdatascience.com/drug-discoverywith-graph-neural-networks-part-1-1011713185eb

Key insights into the paper (continued)

- Hard for GNN models to generate understandable explanations
- Approaches to explain other neural network models:
 - Probe surrogate models for local approximation,
 - Identify influential input instances,

Generally fail to capture relation information in graph data

Needs a way to generate explanations in GNN.

GNNExplainer: Overview

- Gives explanations for predictions made by any GNN models.
- Input: a trained GNN model, the input graph and its predictions.

GNNExplainer: Overview (continued)

- Output explanation: a subgraph of the input graph and a subset of the node features that influence the prediction the most.
- Handles both single and multi instances explanations, meaning that it can explain for either a single node or a class of nodes.

GNNExplainer: Mathematical terminologies

Goal: Explain a node classification task

```
Notations: A graph G on edges E and nodes V,
```

An associated set of node features $X = \{x_1, x_2, ..., x_n\}, x_i \in \mathbb{R}^d$,

A set of classes {1, ..., C} to be classified into,

A computation graph $G_c(v)$ for node v,

The associated adjacency matrix $A_c(v) \in \{0, 1\}^{n \times n}$,

The associated node feature set $X_c(v) = \{x_j \mid v_j \in G_c(v)\}$.

GNNExplainer: Formal formulation of the problem

- GNN is learning a conditional distribution $P_{\Phi}(Y | G_c, X_c)$, where Y is a random variable representing the label in $\{1, ..., C\}$.
- G_s is a subgraph of the computation graph G_c .

GNNExplainer: Formal formulation of the problem (continued)

- X_s is the associated feature set with G_s , and further X_s^F denotes a subset of X_c used in the final explanation generated.
- GNNExplainer generates explanation for prediction \hat{y} as (G_s , X_s^F).

Methodology: Single-instance explanations

For a node v , we have:

$$\hat{y} = \Phi(G_c(v), X_c(v))$$

predicted class trained GNN model computation graph node feature information By GNNExplainer, we want explain/identify:

$$G_S \subseteq G_c(v) \quad X_S = \{x_j | v_j \in G_S\}$$

important subgraph for the prediction

associated node features

How to define the importance? \longrightarrow Mutual information *MI*

What is mutual information?

> <u>reduction in uncertainty</u> about one random variable given knowledge of another

MI(X,Y) = H(X) - H(X|Y)entropy conditional entropy

Entropy: a measure of uncertainty on X

- The higher the entropy, the more uncertain
- Be maximal when $P_X(x)$ is uniform

• Defined as
$$H(X) = -\sum_x P_X(x) \log P_X(x)$$

Conditional Entropy: H(X|Y)

• Average uncertainty about X after observing Y

• Defined as
$$H(X|Y) = \sum_{y} P_Y(y) \left[-\sum_{x} P_{X|Y}(x|y) \log \left(P_{X|Y}(x|y) \right) \right]$$

Example on entropy: guessing the color

Example on MI: guessing the color with help

 $\succ MI(X,Y) = H(X) - H(X|Y)$

How to define the importance? \longrightarrow Mutual information MI $\max_{G_S} MI\left(Y, (G_S, X_S)\right) = H(Y) - H(Y|G = G_S, X = X_S)$ \downarrow entropy on the whole graph; constant entropy on the reduced graph

That is equivalent to minimize

$$H(Y|G=G_S, X=X_S) = -\mathbb{E}_{Y|G_S, X_S} \left[\log P_{\Phi}(Y|G=G_S, X=X_S)\right]$$

- G_S minimizes uncertainty of Φ when the computation is limited to G_S
- In effect, G_S maximizes probability of \hat{y}

 G_c has exponentially many G_S — How to solve the optimal G_S ?

- Step 1: Approximate the distribution of G_S as \mathcal{G}
 - Fractional adjacency matrix $A_S \in [0, 1]^{n \times n}$, and enforce $A_S[j, k] \leq A_c[j, k]$
- Step 2: To minimize $H(Y|G=G_S, X=X_S)$ now becomes

$$\min_{\mathcal{G}} \mathbb{E}_{G_S \sim \mathcal{G}} H(Y | G = G_S, X = X_S)$$

Step 3: By Jensen's inequality with convexity assumption, consider the upper bound

$$\min_{\mathcal{G}} H(Y|G = \mathbb{E}_{\mathcal{G}}[G_S], X = X_S)$$

 G_c has exponentially many G_S — How to solve the optimal G_S ?

- Step 4: Approximate \mathcal{G} as $P_{\mathcal{G}}(G_S) = \prod_{(j,k) \in G_c} A_S[j,k]$
- Step 5: With a regularizer for promoting discreteness, we replace $\mathbb{E}_{\mathcal{G}}[G_S]$ by $A_c \odot \sigma(M)$ original adjacency matrix sigmoid function we only need to learn -1.0 $\int \frac{\operatorname{sig}(t)}{t}$ $- sig(t) = \frac{1}{1+e^{-t}}$ -0.8-

Experiments: Single-instance explanations

Synthetic datasets:

- BA-Shapes
 - a base Barabási-Albert (BA) graph on 300 nodes
 - +: connect randomly selected nodes to
 - a set of 80 "house" shaped motifs
 - +: connect randomly selected nodes to
 - 0.1 N random edges
 - 4 classes

Synthetic datasets:

- BA-Community
 - Union of 2 BA-Shape graphs
- Tree-Cycles
 - 8-level binary tree + six-node cycle motifs
- Tree-Grid
 - 8-level binary tree + 3-by-3 grid motifs

Tree-Cycles Tree-Grid Image: Cycles Image:

BA-Community

Real-world datasets:

MUTAG

4337 molecule graphs labeled according to their mutagenic effect on the Gram-negative bacterium S

Reddit-Binary

- 2000 graphs, each representing an online discussion thread on Reddit
- nodes are users participating in a thread
- edges indicate that one user replied to another user's comment
- Iabeled according to the type of user interactions: Question-Answer or Online-Discussion

Baselines:

GRAD

• Gradient of the GNN's loss function with respect to the adjacency matrix and the associated node features

ATT

- Graph attention GNN (GAT)
- Learns attention weights for edges in the computation graph

Quantitative analyses (only on synthetic datasets)

	BA-Shapes	BA-Community	Tree-Cycles	Tree-Grid
Explanation accuracy				
Att	0.815	0.739	0.824	0.612
Grad	0.882	0.750	0.905	0.667
GNNExplainer	0.925	0.836	0.948	0.875

Qualitative analyses: synthetic datasets

Qualitative analyses: synthetic datasets

Qualitative analyses: real-world datasets

Qualitative analyses: real-world datasets

Methodology: Joint learning of graph structural and node feature information

GNNExplainer: Joint learning of graph structural and node feature information

In the optimal solution, we have

 $G_S \subseteq G_c(v) \quad X_S = \{x_j | v_j \in G_S\}$

important subgraph for the prediction

associated node features

However, not all node features are equally important. We want to jointly learn

$$G_S \subseteq G_c(v)$$
 $X_S^F = \{x_j^F | v_j \in G_S\}, \quad x_j^F = [x_{j,t_1}, \dots, x_{j,t_k}] \text{ for } F_{t_i} = 1$

important node features in G_S by a binary feature selector $F \in \{0,1\}^d$

GNNExplainer: Joint learning of graph structural and node feature information

How to define important features — Again, mutual information *MI*

$$\max_{G_S, F} MI(Y, (G_S, F)) = H(Y) - H(Y|G = G_S, X = X_S^F)$$

GNNExplainer: Joint learning of graph structural and node feature information

How to solve F? \longrightarrow Backpropagate gradients in $\max_{G_S,F} MI(Y,(G_S,F)) = H(Y) - H(Y|G = G_S, X = X_S^F)$

- Step 1: Marginalize all feature subsets with a probability distribution
 - Use Monte Carlo to sample from empirical marginal distribution for nodes in X_S
- Step 2: backpropagate through a d-dimensional random variable X as

$$X = Z + (X_S - Z) \odot F \quad \text{s.t. } \sum_j F_j \le K_F$$

Experiments: Joint learning of graph structural and node feature information

Qualitative analyses: real-world datasets; node feature importance

Att Not applicable

Not applicable

Extensions

GNNExplainer: Multi-instance explanations through graph prototypes

How did a GNN predict that a set of nodes all have the label?

- \rightarrow a global explanation of each class
- ---- how identified subgraph relates to a graph structure that explains an entire class
- Step 1: Graph alignments
 - Choose a reference node V_c , as the mean embeddings of all nodes assigned to c
 - Take explanation for $G_S(v_c)$
 - Align it to explanations of other nodes assigned to class c
- Step 2: Prototypes
 - Aggregate aligned adjacency matrices into a graph prototype A_{proto}
 A_{proto} : graph pattern shared between nodes in the same class

GNNExplainer can be used

- in any machine learning task on graphs
- by any GNN models
- with a low computational complexity

Conclusions

Pros:

- Define the framework for GNN-based models' explanation
- Propose a general, model-agnostic approach for graph structures and node features
- The performance is quite impressive

Cons:

- The optimization is not fully mathematically proved
- More quantitative results should be included

