
Generating Explanations

for Graph Neural Networks
Jinze Cui

Hanze Meng

1



Introduction to GNN
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Example: Molecules modeled as graphs. 

What is graph data

Definition: Data representing objects and relationships between them using 
nodes and edges of graphs.

Possible sources of graph data: social network, images, molecules, …
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What we want to achieve using these graph data

Solve Prediction Problems!

Three levels of prediction based on graph structure:

- Graph Level: For a new molecule, predict whether it is toxic 
or not based on information from the graph data.

- Node Level: In a social network graph, predict the likelihood that a 
person will develop new friendship.

- Edge Level: In a map, predict the time it will take to the destination.
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How do we predict

Neural network models are helpful!

A refresh on (convolutional) neural network:

- For classification and pattern recognition.

- Consists of multiple layers of neurons.

- Neurons process and transmit information.
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How do we predict (continued)

Graph data are not structured well.

Particularly on convolutional neural network: 

Limitations:

- For fixed-structure data, ex. 2-dimension matrix of pixels.

- CNN does not guarantee invariance on node ordering.

Need a new framework to process graph data.
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How does GNN work

A graph-in, graph-out structure:

- Embed feature info into nodes, edges and global context of the input graph.

- Progressively transform the embedded information through multiple layers.

- No changes on the connectivity of the input graph.
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What does GNN do at each layer

- Three key computations at each layer l: message, aggregation and update.

- Message: A function MSG(hi
l-1, hj

l-1, rij),
hi

l-1 and hj
l-1 are representations of nodes vi and vj in layer l-1,

rij is the relation information between nodes vi and vj.

- Aggregation: A function AGG({mij
l | vj ∈Nvi}),

vi is the node we are aggregating on, 
Nvi is the neighborhood of vi, 
mij

l is the message from the MSG function. 8



What does GNN do at each layer (continued)

- Aggregation: Some possible AGG functions are mean, max, and min.

- Update: A nonlinear function UPDATE(Mij
l ,  hi

l-1),
Mij

lis the aggregated message from the MSG function,
hi

l-1 is the representation of node vi in the previous layer.
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Review on Paper: 
GNNExplainer: Generating Explanations for Graph 

Neural Networks
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Key insights into the paper

- Transparency is important for the following reasons:

- Increases the trust in models themselves.

- Avoids fairness or privacy issues.

- Helps detect incorrect patterns before deployment.

Image Source: 
https://towardsdatascience.com/drug-discovery-
with-graph-neural-networks-part-1-1011713185eb
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Key insights into the paper (continued)

- Hard for GNN models to generate understandable explanations

- Approaches to explain other neural network models:

- Probe surrogate models for local approximation,

- Identify influential input instances,

Generally fail to capture relation information in graph data

Needs a way to generate explanations in GNN.
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GNNExplainer: Overview

- Gives explanations for predictions made by any GNN models.

- Input: a trained GNN model, the input graph and its predictions.
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GNNExplainer: Overview (continued)

- Output explanation: a subgraph of the input graph and a subset of 
the node features that influence the prediction the most.

- Handles both single and multi instances explanations, meaning 
that it can explain for either a single node or a class of nodes.
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GNNExplainer: Mathematical terminologies

Goal: Explain a node classification task

Notations: A graph G on edges E and nodes V,

An associated set of node features Χ = {x1, x2, …, xn}, xi∈ Rd,

A set of classes {1, …, C} to be classified into,

A computation graph Gc(v) for node v,

The associated adjacency matrix Ac(v)∈{0, 1}nxn,

The associated node feature set Xc(v) = {xj | vj∈Gc(v)}.
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GNNExplainer: Formal formulation of the problem

- GNN is learning a conditional distribution PΦ(Y | Gc, Xc), where Y is a random 
variable representing the label in {1, …, C}.

- Gs is a subgraph of the computation graph Gc.
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GNNExplainer: Formal formulation of the problem (continued)

- Xs is the associated feature set with Gs, and further Xs
F denotes a subset of Xc

used in the final explanation generated.

- GNNExplainer generates explanation for prediction ŷ as (Gs, Xs
F).
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Methodology:
Single-instance explanations
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GNNExplainer: Single-instance explanations

For a node    , we have: 

predicted class trained GNN model computation graph node feature information

By GNNExplainer, we want explain/identify: 

important subgraph for the prediction associated node features
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GNNExplainer: Single-instance explanations

How to define the importance?

What is mutual information?

Mutual information MI

Ø reduction in uncertainty about one random variable given knowledge of another

Ø 𝑀𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
entropy conditional entropy
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GNNExplainer: Single-instance explanations

Entropy:  a measure of uncertainty on 

l The higher the entropy, the more uncertain

l Be maximal when             is uniform

l Defined as

Conditional Entropy: 

l Average uncertainty about     after observing

l Defined as
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GNNExplainer: Single-instance explanations

Example on entropy: guessing the color

0.477 0.439
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GNNExplainer: Single-instance explanations

Example on MI: guessing the color with help

Choose a hint: 

Ø # of

Ø # of      and # of 

Ø 𝑀𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
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GNNExplainer: Single-instance explanations

How to define the importance?

entropy on the whole graph; constant entropy on the reduced graph

That is equivalent to minimize

Mutual information MI

• minimizes uncertainty of    when the computation is limited to
• In effect,      maximizes probability of
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GNNExplainer: Single-instance explanations

has exponentially many                       How to solve the optimal     ？

l Step 1: Approximate the distribution of      as

n Fractional adjacency matrix                         , and enforce

l Step 2: To minimize                                   now becomes

l Step 3: By Jensen’s inequality with convexity assumption, consider the upper bound
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GNNExplainer: Single-instance explanations

has exponentially many                       How to solve the optimal     ？

l Step 4: Approximate     as

l Step 5: With a regularizer for promoting discreteness, we replace               by

original adjacency matrix sigmoid function we only need to learn
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Experiments:
Single-instance explanations
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Experiments: Datasets

Synthetic datasets:

l BA-Shapes
n a base Barabási-Albert (BA) graph on 300 nodes
➕: connect randomly selected nodes to
n a set of 80 “house” shaped motifs 
➕: connect randomly selected nodes to

n 0.1 N random edges
n 4 classes

Non-house
nodes

Top

Middle

Bottom
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Experiments: Datasets

Synthetic datasets:

l BA-Community
n Union of 2 BA-Shape graphs

l Tree-Cycles
n 8-level binary tree + six-node cycle motifs

l Tree-Grid

n 8-level binary tree + 3-by-3 grid motifs
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Experiments: Datasets

Real-world datasets:

l MUTAG
n 4337 molecule graphs labeled according to their mutagenic effect on the Gram-negative bacterium S

l Reddit-Binary
n 2000 graphs, each representing an online discussion thread on Reddit

n nodes are users participating in a thread
n edges indicate that one user replied to another user’s comment

n labeled according to the type of user interactions: Question-Answer or Online-Discussion
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Experiments: Methods

Baselines:

l GRAD
l Gradient of the GNN’s loss function with respect to the adjacency matrix and the associated node features

l ATT
l Graph attention GNN (GAT) 

l Learns attention weights for edges in the computation graph
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Experiments: Results

Quantitative analyses (only on synthetic datasets)
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Experiments: Results

Qualitative analyses: synthetic datasets
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Experiments: Results

Qualitative analyses: synthetic datasets

34



Experiments: Results

Qualitative analyses: real-world datasets
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Experiments: Results

Qualitative analyses: real-world datasets
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Methodology:
Joint learning of graph structural and 

node feature information
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GNNExplainer: Joint learning of graph structural and node feature information

In the optimal solution, we have

important node features in         by a binary feature selector 

However, not all node features are equally important. We want to jointly learn 
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GNNExplainer: Joint learning of graph structural and node feature information

How to define important features Again, mutual information MI
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GNNExplainer: Joint learning of graph structural and node feature information

How to solve     ?

l Step 1: Marginalize all feature subsets with a probability distribution

n Use Monte Carlo to sample from empirical marginal distribution for nodes in

l Step 2: backpropagate through a d-dimensional random variable     as

Backpropagate gradients in
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Experiments:
Joint learning of graph structural and 

node feature information

6

41



Experiments: Results

Qualitative analyses: real-world datasets; node feature importance
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Extensions
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How did a GNN predict that a set of nodes all have the label? 

a global explanation of each class 
how identified subgraph relates to a graph structure that explains an entire class

GNNExplainer: Multi-instance explanations through graph prototypes

l Step 1: Graph alignments 

n Choose a reference node     , as the mean embeddings of all nodes assigned to c
n Take explanation for              
n Align it to explanations of other nodes assigned to class c

l Step 2: Prototypes

n Aggregate aligned adjacency matrices into a graph prototype

n : graph pattern shared between nodes in the same class 44



GNNExplainer: Extensions

GNNExplainer can be used

n in any machine learning task on graphs
n by any GNN models
n with a low computational complexity
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Conclusions
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Experiments: Datasets

Pros:
l Define the framework for GNN-based models’ explanation

l Propose a general, model-agnostic approach for graph structures and node features

l The performance is quite impressive

Cons:
l The optimization is not fully mathematically proved

l More quantitative results should be included
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