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What are we going to talk about today?

1. Discuss paper one
a. The data-fusion problem and motivation
b. Brief review of concepts from Pearl’s model.
c. Introduction to do-calculus
d. Techniques for overcoming the problem

2. Discuss paper two
a. Motivation / Brief introduction to machine vision
b. Transportability (a.k.a., domain adaptation)

3. Our research
a. Introduction to concepts
b. How causal inference might help!
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Today’s motivation: can Pearl’s model address more complex issues?

In previous classes:

● Focused on confounding bias

Many possible solutions:

● Back-door criterion
● Front-door criterion
● Instrumental variables

3

In today’s lecture, we focus on:

● Sampling bias
● Transportability bias

Do-calculus offers solutions!



Causal inference and the data-fusion 
problem

Bareinboim and Pearl, 2015
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What is data-fusion?

“Data fusion aims to combine results from many experimental and observational 
studies, each conducted on a different population and under a different set of 
conditions in order to synthesize an aggregate measure of targeted effect size that 
is “better,” in some sense, than any one study in isolation” (Bareinboim and Pearl, 
2016, p. 7351)
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Type of Bias Experimental Design

Confounding bias p(v), p(v|do(z))

Sample selection bias p(y|S=1), p(y|do(X=x), S=1)

Transportability Bias p(v|do(x)) + 
observational studies
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Sources of bias covered in this paper by experimental design



“Not all data are created equally”

● The way in which your data is sampled matters.
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Brief Review: Structural Causal Models

Slide taken from lecture 2



Brief Review

d-separation identifiability

Having d-separation ensures 
independence between the 

treatment and the effect.

A causal query is identifiable if we 
can get a unique parameterization 

of our model using our 
assumptions and the available 

data.

We can test for identifiability 
using do-calculus.
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X, Y, Z, W arbitrary disjoint sets of nodes in a causal DAG G

The subgraph achieved by deleting all edges pointing towards X

The subgraph resulting from deleting all edges pointing away from X.

do-Calculus: Notation
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Example Subgraphs

Pearl, Judea. Causality: Models, Reasoning, and Inference. p.87 11



The Rules of do-Calculus

12While this math comes from the paper, I recommend this blog post for a simpler overview: 
https://stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/ 

https://stephenmalina.com/post/2020-03-09-front-door-do-calc-derivation/


Rule 1: Insertion/deletion of observations
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Rule 2: Action/observation exchange
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Rule 3: Insertion/deletion of actions

15

Z

YX

WZ

YX

W



A causal query Q is identifiable if the rules 
of do-Calculus can be applied repeatedly 
until there are no do-operators remaining.
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Example Problem (if time permits)

Given the computational graph below, compute P(y|do(z)).
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Graph from Pearl, Judea. Causality: Models, Reasoning, and Inference. p.81. 
See solution on pp.86-88.



Applications of do-Calculus

Already seen in this course:

● Backdoor criterion and adjustment
● Frontdoor criterion and adjustment

New applications:

● Identification through auxiliary experiments
● Dealing with Sample Selection Bias
● Transportability
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Identification through Auxiliary Experiments

● Hypothetically – what if you wanted to calculate the effect of cholesterol on 
heart disease? You cannot control cholesterol directly, but if you could control 
for diet, could you calculate P(y|do(x))?

● X - cholesterol
● Z - diet
● Y - heart disease

19



This is just the use of an instrumental variable

Through the application of do-calculus, we get:

This technique is known as z-identifiability.
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Dealing with Sample Selection Bias

Let’s say that we want to answer the 
query P(y|do(x)), but we have a 
preferential selection problem, meaning 
that we only have the data P(y, x | S=1).

Under what conditions can Q be 
recovered?

https://m.xkcd.com/2618/ 
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https://m.xkcd.com/2618/


Selection Bias Examples
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Selection Bias Example Problem
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Transportability and the Problem of Data Fusion

● Transportability – we want conclusions to apply to different scenarios. 
○ A.K.A., heterogeneous treatment effect, or domain adaptation, as used in the field of machine 

vision.
○ This is a more general consideration of the sample selection problem…we want to understand 

results in a population that has different characteristics than the experimental/observational 
data we are looking at.
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Example of Transportability
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● Experimental Data: RCT conducted in 
Los Angeles to estimate air pollution 
exposure on health.

● Query: what is effect of air pollution on 
population of New York?

● Problem: Age distributions vary 
between the two cities.

Graph:
● X - air pollution exposure
● Y - health
● Z - age
● S - variable influencing age distribution



Goal: express query from experiments in source domain 
and observations in target domain (or, as represented in 
the text:

Solution to this query, using the graph from 5a:
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Paper Conclusions

● A lot of research condensed into this paper to create a generalized framework 
for dealing with general problems of data-fusion.

● Demonstrates how do-calculus can be used to deal with external validity (how 
well we can generalize results from experiments/observations).

Limitations:

● Authors did not discuss measurement bias

Further Resources:

● Pearl, Judea. Causality: Models, Inference, and Reasoning. Chapter 3.
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Causal Transportability for Visual 
Recognition
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Convolutional Neural Networks

● Neural Network- flexible, 
black-box machine learning 
model great at modeling complex 
relationships

● Convolutions
○ Used to consider pixels in the 

context of the pixels are around it
○ Considers spatial locality, rather than 

treat each pixel as a “feature”
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-n
eural-networks-the-eli5-way-3bd2b1164a53

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53


Neural Networks for Computer Vision

● CNNs can be trained to perform a 
variety of tasks (by taking 
advantage of different architectures 
and loss functions)
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https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-over
view-94ca109274f2

https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2
https://medium.com/swlh/object-detection-and-instance-segmentation-a-detailed-overview-94ca109274f2


Example: Robust vs Non-Robust Features in Images

● If I were training a classifier to classify lions vs tigers, what would some robust 
and non-robust features be?

Testing Image:Lion Training Images: Tiger Training Image:

33

https://www.houstonzoo.org/blog/houston-zoos-elderly-fem
ale-tiger-dies/
https://www.naturalworldsafaris.com/wildlife/african-lions
https://www.houstonzoo.org/explore/animals/lion-african/
https://www.travelandleisure.com/trip-ideas/safaris/lion-king
-themed-family-safari

https://www.houstonzoo.org/blog/houston-zoos-elderly-female-tiger-dies/
https://www.houstonzoo.org/blog/houston-zoos-elderly-female-tiger-dies/
https://www.naturalworldsafaris.com/wildlife/african-lions
https://www.houstonzoo.org/explore/animals/lion-african/
https://www.travelandleisure.com/trip-ideas/safaris/lion-king-themed-family-safari
https://www.travelandleisure.com/trip-ideas/safaris/lion-king-themed-family-safari


Example: Robust Features

● If I were training a classifier to classify lions vs tigers, what would some robust 
features be?

Testing Image:Lion Training Images: Tiger Training Image:
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https://www.houstonzoo.org/blog/houston-zoos-elderly-fem
ale-tiger-dies/
https://www.naturalworldsafaris.com/wildlife/african-lions
https://www.houstonzoo.org/explore/animals/lion-african/
https://www.travelandleisure.com/trip-ideas/safaris/lion-king
-themed-family-safari

https://www.houstonzoo.org/blog/houston-zoos-elderly-female-tiger-dies/
https://www.houstonzoo.org/blog/houston-zoos-elderly-female-tiger-dies/
https://www.naturalworldsafaris.com/wildlife/african-lions
https://www.houstonzoo.org/explore/animals/lion-african/
https://www.travelandleisure.com/trip-ideas/safaris/lion-king-themed-family-safari
https://www.travelandleisure.com/trip-ideas/safaris/lion-king-themed-family-safari


Example: Non-Robust Features

● If I were training a classifier to classify lions vs tigers, what would some 
non-robust features be?

Testing Image:Lion Training Images: Tiger Training Image:
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https://www.houstonzoo.org/blog/houston-zoos-elderly-fem
ale-tiger-dies/
https://www.naturalworldsafaris.com/wildlife/african-lions
https://www.houstonzoo.org/explore/animals/lion-african/
https://www.travelandleisure.com/trip-ideas/safaris/lion-king
-themed-family-safari

Image 
background

Angle/pose in 
relation to 
camera Image source (and resolution)

https://www.houstonzoo.org/blog/houston-zoos-elderly-female-tiger-dies/
https://www.houstonzoo.org/blog/houston-zoos-elderly-female-tiger-dies/
https://www.naturalworldsafaris.com/wildlife/african-lions
https://www.houstonzoo.org/explore/animals/lion-african/
https://www.travelandleisure.com/trip-ideas/safaris/lion-king-themed-family-safari
https://www.travelandleisure.com/trip-ideas/safaris/lion-king-themed-family-safari


Example: Non-Robust Features

● Without an abundance of training 
imagery to cover all possible gaps, 
there will often be a domain gap

○ Sampling variability
○ Legitimate differences in the distribution 

between the training and testing data
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https://datascience.stackexchange.com/questions/45774/wher
e-does-the-deep-learning-needs-big-data-rule-come-from

https://datascience.stackexchange.com/questions/45774/where-does-the-deep-learning-needs-big-data-rule-come-from
https://datascience.stackexchange.com/questions/45774/where-does-the-deep-learning-needs-big-data-rule-come-from


Domain Adaptation in Computer Vision: Real Use Cases

Example:

● Train a classifier the 
abundance of high-quality, 
labeled satellite imagery in 
the USA to detect energy 
infrastructure

● Apply classifier to predict on 
imagery throughout the world
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https://duke-bc-2021-ai-for-energy-access.github.io/BC-2021-AI-for-ener
gy-access/

https://duke-bc-2021-ai-for-energy-access.github.io/BC-2021-AI-for-energy-access/
https://duke-bc-2021-ai-for-energy-access.github.io/BC-2021-AI-for-energy-access/


Current Approaches to Domain Gap in Computer Vision

● Self-supervised learning
● Generative data augmentations: 

CycleGAN and CyCADA
● Adversarial self challenging
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https://junyanz.github.io/CycleGAN/

https://arxiv.org/abs/1703.10593
https://arxiv.org/abs/1711.03213
https://junyanz.github.io/CycleGAN/


Domain Adaptation in Computer Vision

UX - Nuisance features

UXY - Concept features

● Want model to learn to 
detect land birds and 
water birds by their 
features, not their 
backgrounds
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Causal Image Recognition

Structural Causal Model:

● V = {X, Y}
○ Observed variables  (image, label)

● U = {UX, UXY}
○ Unobserved variables (nuisance 

factors, concept vector)
● F = {fX, fY}

○ X ← fX(UX, UXY)
○ Y ← fY(X, UXY)

● P(U)
○ Probability distribution over unobserved 

variables
○ Underlying distribution combines with F 

to induce distribution over P(X, Y)
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Causal Image Recognition

Intuition:

● UXY
○ Underlying factors that produce core 

features of image and label
○ Example: Flippers and wing of bird

● UX
○ Nuisance factors (e.g. background)
○ Affect image generation process
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Causal Image Recognition

Intuition:

● fX
○ Generation process of X
○ Translate underlying factors 

“flippers”, “wing”, into “waterbird”
○ PROBLEM: Flippers may be 

associated with water background

● fY
○ Generation process of Y
○ Someone labeling X who 

understands birds via UXY
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Propositions about SCMs

The transportability problem (out of distribution 
problems):

● Training domain different from testing 
domain

● Can assume labeling process consistent, 
generative process for image may differ
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Propositions about SCMs

The transportability problem (out of 
distribution problems):

● Model trained to learn to predict label Y 
after being trained on images X

● This does not transport to predicting 
labels from a different image distribution 
(unobserved confounding effects)
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Propositions about SCMs

The transportability problem (out of 
distribution problems):

●  Causal effect invariant (“transportable”)
● The causal effect P(Y | do(X)) can be 

used as a suitable proxy (surrogate 
model) for a classifier for the target 
domain
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Identifiability

● Causal effect P(Y | do(X)) is not 
identifiable

● Multiple SCMs consistent with 
probability distribution P(X, Y)

○ Can not deduce the “true” causal effect
● New goal: Identify effect of X on Y 

without knowing backdoor variables
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Neural Representation Approach

● With some select assumptions and 
do-calculus, we can compute the 
causal effect directly

● Now just need Neural Networks to 
learn the components of the formula 
that go into the causal effect
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Neural Representation Approach

● Neural Network learns latent 
representations from images that 
preserve causal effect (can use 
unsupervised learning or 
pre-trained networks)

● Another network makes 
classification based on high-level 
features of representations and 
low-level features of images
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https://medium.com/dataseries/variational-aut
oencoder-with-pytorch-2d359cbf027b

https://medium.com/dataseries/variational-autoencoder-with-pytorch-2d359cbf027b
https://medium.com/dataseries/variational-autoencoder-with-pytorch-2d359cbf027b


Experimental Setup

● Popular datasets
○ WaterBird, ImageNet-Rendition, 

ImageNet-Sketch
● Baselines

○ State-of-the-art: GenInt, RSC, IRM
○ “Ours”- NN with 3 random convolution layers, 2 

layer FC network to predict Y
■ Nj = 256, Ni = 10

○ Ablation- 
■  Nj = 1, Ni = 1
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Experimental Results

● Model outperformed baseline and 
state-of-the-art in contrastive learning 
representations (ImageNet-Sketch)

● Model performed better in 2/4 supervised 
learning representations (ImageNet 
Rendition)

● OOD generalization improves as Nj 
increases

● Estimates causal effect from 
representation
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GradCAM Results
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Paper Conclusions

● Integrating causal knowledge and tools and applying causal transportability 
theory towards the challenge of generalization in computer vision can improve 
out of distribution robustness
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Our Research
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Urban Heat Islands

● Urban areas are much hotter than 
rural areas in the summer.

● There are known interventions 
(e.g., planting trees), but their 
efficacy depends on a lot of 
variables, such as the local climate.
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We want a transportable model

● Can we create a model to measure the urban heat island effect more 
generally? A lot of models cannot generalize across diverse climates.

● Can we understand the impact of various interventions as a function of the 
local climate (or other variables?)
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Appendix
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Neural Representation Approach

Two NN models:

● P^(R | X)
○ Generates visual representations R from images 

X
● P^(Y | R, X)

○ Classifies Y from visual representations, images
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Neural Representation Approach

Assumption 1: Decomposition

● Each image X can be decomposed into 
causal (Z) and spurious factors (W)

○ X = (Z, W)
○ W contains lower level signal of image (may 

confound with Y)
○ Z refines patches into interpretable factors, used 

by labeler
● Generative process follows causal graph 

shown
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Neural Representation Approach

Assumption 2: Sufficient Representation

● Neural representations P^(R | Z, W) are 
learned such that they do not lose 
information with respect to Z

○ P^(R | Z, W) will be different for different values 
of Z

○ Unambiguously represents the causal factors
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Neural Representation Approach

Assumption 3: Selective prediction

● P^(Y = y | R = r, X = x’) = P(y | z, w’)
○ LHS: Probability of neural output being y

■ Given sample from neural representation of 
first image (P^(R | x)) + true second image 
(x’ = (z’, w’))

○ RHS: True labeling probability of class y given 
the causal factor of first image and spurious 
factors of the second image

● These will be the same!
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Neural Representation Approach

Given these assumptions, we can directly 
compute using R

● P(y | do(X)) = ∑ rˆ P (r|x) ∑ x′ ˆ P (y|r, x′)P 
(x′)

○ P^ (Y | R, X) extracts causal information from the 
representation and spurious information from 
second image

○ Assume P(X) is sampled from uniform 
distribution
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Phase 1: How can we construct P(R | X)?

Several ways to estimate P^(R | X) 
while satisfying Assumption 2:

● Variational Auto-Encoders
○ Unsupervised

● Contrastive Learning
○ Unsupervised

● Pretrained models from larger 
dataset

○ Supervised
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Phase 2: How can we construct P(Y | R, X)?

Several ways to estimate P^(Y | R, X) while 
satisfying Assumption 3:

● Use a bag of patches subsampled from input 
image X as input

○ Corrupts global shape information
○ Contains local, spurious features

● Model has limited capacity
○ Learned information about W
○ Learn Z from representation r, ignore W from 

representation
● Uses low-level features from X and high-level 

features from latent representation R
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How to Train Your Causal-Transportability Model

● Phase 1
○ Train representation with VAE/constrastive 

learning or use representation from pre-trained 
model

● Phase 2
○ Train P^(Y | R, X) from sample random images X
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Causal-Transportability Model Inference

● Randomly sample representation R
● for r in R:

○ Sample images X from random categories
○ Make prediction based on our direct computation

■ P(y | do(X)) = ∑ rˆ P (r|x) ∑ x′ ˆ P 
(y|r, x′)P (x′)

■
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