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Stop explaining black box machine learning
models for high stakes decisions and use
interpretable models instead

Cynthia Rudin®



High-stake Prediction Applications

Overcoming Racial Bias In Al Racial bias in a medical algorithm favors white
Shm :é‘"‘cr;]r's“gly Bvenin patients over sicker black patients

Al expert calls for end to UK use of

‘ > . v : Al Bias Could Put Women’s
raCIally biased algorlthms Lives At Risk - A Challenge For
Regulators

Gender bias in Al: building Blain Al Anrcht e
° ° 1as 1IN Al ropiem recognize u
fairer algorithms still unresol\l:ed 9

Amazon, Apple, Google, IBM, and Microsoft worse at
transcribing black people's voices than white people's with
Al voice recognition, study finds

Millions of black people affected by racial
biasin health-care algorithms When It Comes to Gorillas, Google Photos Remains Blind

Google promised a fix after its photo-categorization software labeled black people as gorillas in 2015. More than two years later, It hasn't found one.

Study reveals rampant racism in decision-making software used by US hospitals —

The Week in Tech: Algorithmic Bias Is
Bad. Uncovering It Is Good.

Google ‘fixed' its racist algorithm by removing
gorillas from its image-labeling tech

Artificial Intelligence has a gender bias
problem - just ask Siri

The Best Algorithms Struggle to Recognize Black Faces Equally

US government tests find even top-performing facial recognition systems misidentify blacks at rates five to 10 times higher than they do whites.



Black Box Models

T00-GOMPLICATED T00-GOMPLICATED
& PROPRIETARY

Highly recursive (e.g.
deep learning models)
Difficult to manually e Preserve secrecy
combine outside

information (e.g. risk

assessment)

n?5

PROPRIETARY

e Limited transparency
(e.g. training data,
model selection)

e Example: COMPAS
(recidivism
prediction)



Explainable ML/AI

“tools and frameworks to help you understand and interpret
predictions made by your machine learning models”

- Google Explainable Al




COMPAS and ProPublica

“many of the methods that claim to produce explanations instead compute useful summary
statistics of predictions made by the original model.”
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Key issues with explainable ML



“It is a myth that there is necessarily a trade-off
between accuracy and interpretability.”

e Complicated model does not always give top performances.

e When data is nicely structured with meaningful features, simple models
perform similarly to complicated models [e.g. Razavian et al., 2015]

/ interpret results — refine data processing AND REPEAT

e Model improvement is an iterative process. So the more interpretable
the model, the easier to refine the data processing step.
o Canreveal flaws in the dataset, false assumptions in data
generation, find meaningful features



https://www.ultraboardgames.com/telestrations/game-rules.php



“Explainable ML methods provide explanations that
are not faithful to what the original model
computes.”’

e Explanations can be an inaccurate representation of the original model
in parts of the feature space.
o Perfect fidelity is infeasible

e Would you trust if explanations are said to be correct 90% of the time?

e Instead of the word “explanation,” call them "“summaries of predictions”,
“summary statistics” or “trends”



“Explanations often do not make sense or
do not provide enough detail to understand
what the black box is doing.”

e Explanation may omit information
about how relevant information is
being used

\‘ “long tails” DOG

e Explanation may be the same for d “long tadlc”
multiple classes

. pom?fy ears
e Recent works show explanations only \‘
— D06
for the observation’s correct label (_d



“Black box models with explanations can lead to an
overly complicated decision pathway that is ripe for
human error.”

e Data entry errors (i.e. typographical errors) can happen

e ‘If typographical errors by humans entering these data into a survey occur
at a rate of 1%, then more than one out of every two surveys on average
will have at least one typographical error”

e Difficult to troubleshoot and would not be able to discover flaws in our
model



“Counterfactual explanations’ of black boxes are
insufficient.”

e Counterfactual explanations need to be realistic, an action that is
reversible

e Example of counterfactual explanation: You will qualify for the loan you
were previously rejected...
o If you have reduced your debt by $5000 and increased your savings
by 50%
o If you had gotten a job that pays $500 more per week

¢ Minimal change in input may lead to different conclusion per individual

e Which explanation is lowest cost for the user cannot be decided



Interpretable Model

animal_tree

/—Table-l—l—Machine learning model from the CORELS algorithm Has feathers?
IF age between 18-20 and sex THEN predict arrest
is male (within 2 years) rue \False
ELSE IF age between 21-23 and 2-3 THEN predict arrest

prior offences Can fly? Has finns?

ELSE IF more than three priors THEN predict arrest

\ ELSE predict no arrest ue |False True \ False

This model from ref. ** is the minimizer of a special case of equation (1) discussed later in the

challenges section. CORELS' code is open source and publicly available at http://corels.eecs.
harvard.edu/, along with the data from Florida needed to produce this model. Hawk Penguin Dolphin Bear




Key issues with interpretable ML



“Corporations can make profits from the intellectual
property afforded to a black box.”

Table 1| Machine learning model from the CORELS algorithm

IF age between 18-20 and sex THEN predict arrest . . .
is male (within 2 years) e Certifiably Optimal Rule Lists
ELSE IF age between 21-23 and 2-3 THEN predict arrest (CORELS) that looks for if-then
prior offences patterns in data.
ELSE IF more than three priors THEN predict arrest o CORELS is EQUALLY ACCURATE
ELSE predict no arrest as COMPAS

This model from ref. ** is the minimizer of a special case of equation (1) discussed later in the
challenges section. CORELS' code is open source and publicly available at http://corels.eecs.
harvard.edu/, along with the data from Florida needed to produce this model.



“Corporations can make profits from the intellectual
property afforded to a black box.”

Table 2 | Comparison of COMPAS and CORELS models

COMPAS CORELS
Black box; 130+ factors; might Full model is in Table 1; only
include socio-economic info; age, priors, gender (optional);

expensive (software licence); within ~ no other information; free,
software used in US justice system transparent

COMPAS claims that it needs to be proprietary in order to avoid revealing the trade secret.
- prevents them from being gamed or reverse-engineered.



Discussion: Is there ANY incentives for
companies to strive for interpretability?



Rudin’s Counterarguments on Proprietary
Models 32

TRUSTING BLACKBOX == TRANSPARENT ==
TRUSTING THE DATASET POSITIVE IMPACT

Dataset may not represent
all possible situations
Dataset may be biased
toward particular class
Accuracy can drop
significantly in real practice

“If the ratings are accurate measures of quality,
then making the ratings more transparent could
have a uniformly positive impact: it would help
companies to make better rated products, it would
help consumers to have these higher quality
products, and it would encourage rating
companies to receive feedback as to whether their
rating systems fairly represent quality.”



“Interpretable models can entail significant effort to
construct in terms of both computation and domain
expertise”

e Interpretability often requires set of application-specific constraints on
the model — harder to solve/computationally costly

o Explanation methods are usually based on simple derivatives,
which lead to easier gradient-based optimization.

e Definition of interpretability vary depending on the domain

o Thus, domain knowledge is crucial.



Rudin’s Counterargument on the Cost & Effort

Analysis and computational cost and time are less
expensive than “the cost of having a flawed or overly
complicated model.”

Creating high-quality model will pay off!



“Scientists’ false belief: Black box models seem to
uncover ‘hidden patterns.”

e Black box uncover subtle hidden patterns in the data

o Pattern recognition

Rudin’s Counterargument

e If the pattern was THAT important, interpretable model can
also locate & use for its prediction

o Will require researcher’s ability to create a model that is
capable of uncovering the interpretable patterns



Algorithmic challenges in interpretable ML



Challenge 1: constructing optimal logical models.

e Heuristic/greedy methods are not designed to choose a globally best choice (i.e., optimal
solution)

e Itis difficult to tell if poor performance is due to the choice of algorithm (not optimizing
its objective) or combination of choice of model class and constraints (not enough
flexibility to fit the data)



Challenge 1: constructing optimal logical models.

An optimization problem: “find a model that minimizes a combination of the fraction of
misclassified training points and the size of the model.”

Classification error: how much you are willing
to sacrifice in order to have one fewer term
(e.g. 0.01 = sacrifice 1% training accuracy to
reduce size by one)

n
|1 .
min f — z 1[tmining observation i is misclassified by f] +AX 51ze(f ) (1)
feEF | n i—1
. T Size of model: # of logical
Famlly of logical models (e.g., conditions (.g. leaves)
decision trees)



Challenge 1: constructing optimal logical models.

An optimization problem: “find a model that minimizes a combination of the fraction of
misclassified training points and the size of the model.”

Classification error: how much you are willing

COMPUTATIONALLY HARD- will take forever to iterate all models & lists

T Size of model: # of logical
conditions (e.g. leaves)

Family of logical models (e.g.,
decision trees)



Challenge 1: constructing optimal logical models.

Example: CORELS algorithm— able to solve the optimization in < 1 minute

e Reduced search space of rule lists using a set of theorems
e Built custom fast bit-vector library for fast exploration of the search space
e Set specialized data structures to keep track of intermediate computations and

symmetries.



Challenge 1: constructing optimal logical models.

Example: CORELS algorithm- able to solve the optimization in < 1 minute

e Reduced search space of rule lists using a set of theorems
e Built custom fast bit-vector library for fast exploration of the search space
e Set specialized data structures to keep track of intermediate computations and

symmetries.

Theoretical + system-level techniques are needed!




Challenge 2: construct optimal sparse scoring systems.

Table 3 | Scoring system for risk of recidivism

1. Prior arrests > 2 1 point
2. Prior arrests > 5 1 point +-
35 Prior arrests for local ordinance 1 point +-
4. Age at release between 18 to 24 1 point +eoe
51 Age at release > 40 —1 point +-ee
Score =
Score -1 0 1 2 3 4
Risk (%) 1.9 26.9 50.0 7311 88.1 953

This system is from ref. #!, which was developed from refs. °“¢. The model was not created by a
human; the selection of numbers and features come from the RiskSLIM machine learning algorithm.

Modified Early Warning Score MEWS
Score 3 2 1 0 1 2 3
Resp <9 15-20 21-29
Puls/min <40 41-50 101-110 | 111-129
Syst.bltr 71-80 81-100 =200
Temp ° C £35 35.1-36 38.1-385| =385
CNS Nytilkommen: Reagerar pi | Reagerar pd
1 rvi tin tilltal smarta

Vid allvarlig oro dver hur patientens tillstand utvecklas, om saturationenen akut forsamras till
< 90% trots syrgas givet med avdelningens forutsattningar eller om diuresen ar < 200 ml pa

4 timmar. Kontakta dagtid; vardlagsansy arig lakare, Kontakta jourtid; op_jour 97140




Challenge 2: construct optimal sparse scoring systems.

e Same optimization problem: “find a model that minimizes a combination of the fraction
of misclassified training points and the size of the model.”
o Computationally very hard because domain over which we solve the optimization
problem is the integer lattice

n
|1 :

min f — Z 1[trainin observation i is misclassified by f] +4AX SlZC(f ) (1)

feF| n =1 ) ¥

Size of model:
# of terms in the model

e Logistic regression: use the coefficients as the “scores” but...
o Lack accuracy
o Uninterpretable coefficients (not 1,-1)



Challenge 2: construct optimal sparse scoring systems.

e Optimization problem for a mixed-integer-nonlinear program whose domain is the integer
lattice.
o “find coefficients bj,j = 1...p for the linear predictive model”

f(Z) = Zj bjzj <—— jt" covariate of observation z
Table 3 | Scoring system for risk of recidivism

1. Prior arrests > 2 1 point Constrain to integers

2. Prior arrests > 5 1 point +oee

3. Prior arrests for local ordinance 1 point +- 1 4 £

4. Age at release between 18 to 24 1 point +oe min — Z lOg 1 + eXp —_— Z bjxij

5. Age at release > 40 —1point +- bl,bz,...,bPE{—IO,—9,...,9,10} n i =1 ?
Score =

Score 10 1 D 3 4 + 4 Z I T T

Risk (%) 1.9 26.9 50.0 731 881 05.3 i [bﬂéo] Training observations covariates

This system is from ref. #, which was developed from refs. **“¢, The model was not created by a

human; the selection of numbers and features come from the RiskSLIM machine learning algorithm.

Size of model: number of non-zero coefficients



Challenge 2: construct optimal sparse scoring systems.

Algorithm 2 Lattice Cutting Plane Algorithm (LCPA)

7k . Input
l ()‘)\ (xinyi) N, training data
constraint set for RiskSLIMMINLP
Co (o penalty parameter
P € [0, 1] optimality gap of acceptable solution
RemoveNode rule to pick a node from a node set (provided by MIP solver)
SplitPartition rule to split a partition into disjoint subsets (provided by MIP solver)

Initialize

ko0 number of cuts
1°(A) « {0} cutting-plane approximation of loss function
(vmin, ymaxy (g, co) bounds on the optimal value
A e optimality gap
Py « conv (L) partition for initial node
vy « ymin lower bound for initial node
N« ((Po, vo)} initial node set

Figure 2: A convex loss function /(A1) and its cutting plane
approximation [?(1) built using cuts at the points A! and A%

1: while ¢ > £5°P do

2: (Pn, vn) < RemoveNode (N) 1 is index of removed node
3 solve RiskSumLP(IK (), Py)

4 AP  coefficients from optimal solution to RiskSLmLP(1% (), Pp)

S g

LP MLP(IK (), Pr)

v optimal value of R

6 if optimal solution s integer feasible then
7 compute cut parameters [(AL') and VI(ALF)
. . 8: PRHT Q) e max{TF(A), LA + (VIAK), A= AMP)) o update approvimarion VA
& ustunb [ risk-slim ' public ®Watch 10 ~ o0 if ol < M hen
10: ymax o LF b update lower bound
11: Abest  jLP b update best solution
12 N « N\ ((Ps, vs) | vs > VMax) & prune suboptimal nodes
. . . 13: dif
<> Code (© lIssues 6 1 Pull requests 1 ® Actions [ Projects (@ Security 14 iy WY
15:  else if optimal solution is not integer feasible then
16 (P, P") « SplitPartition(Pp, AL¥) P!, P are disjoint subsets of Pr
17; (v, v") « (VLP, olP) > oLP is lower bound for P’ P’
. . 18: N« NU(P V), (P, V")) > add child nodes to N
¥ master ~ ¥ 2branches © 0 tags Go to file Add file ~ <> Code v 19 endif
20: VN miny vs & lower bound is smallest lower bound among nodes in N'
21: £« 1 - ymin/ymax b update optimality gap
22: end while
5 . g best 5. Siési p
& ustunb Merge pull request #15 fro... ..  3d11c9a onJun 20,2022 9 173 commits Outpt; & E-BpHimalisalion o RIsKSERIVINGE
RiskSLMLP([ (), ) is a LP relaxation of RiskSLvMIP(] () over the partition # C conv (£):
d
W batch fixing Y 2 years ago Jlin  8+4Cy D
i j=1
st. AeP 4)
W docs cleaned up README 3 years ago ! @
6=1(1)

@ = max(dj, 0)/AT + min(A;, 0)/AV for j=1...d.

https://blog.acolyer.org/2019/11/01/optimized-risk-scores/



Challenge 2: construct optimal sparse scoring systems.

The World Health Organization Adult Attention-
Deficit/Hyperactivity Disorder Self-Report
Screening Scale for DSM-5

Berk Ustun, MS, Lenard A. Adler, MD, [...], and Ronald C. Kessler, PhD

Additional article information

Key Points

Question

Can a brief screening scale based on patient responses to structured
questions detect DSM-5 adult attention-deficit/hyperactivity disorder in

the general population?

Questions in the Optimal RiskSLIM DSM-5 ASRS Screening Scale?

1. How often do you have difficulty concentrating on what people say to you, even

when they are speaking to you directly? (DSM-5 Alc)

2. How often do you leave your seat in meetings or other situations in which you

are expected to remain seated? (DSM-5 A2b)

3. How often do you have difficulty unwinding and relaxing when you have time to

yourself? (DSM-5 A2d)

4. When you’re in a conversation, how often do you find yourself finishing the
sentences of the people you are talking to before they can finish them themselves?

(DSM-5 A2g)
5. How often do you put things off until the last minute? (Non-DSM)

6. How often do you depend on others to keep your life in order and attend to
details? (Non-DSM)




Challenge 3: define interpretability for specific domains and
create methods accordingly, including computer vision.

e What constitutes interpretability in computer vision (visual classification tasks)?
o Able to pay attention to different parts of the image and explain why these parts of
the image were important in their reasoning process

This Looks Like That: Deep Learning for
Interpretable Image Recognition

Chaofan Chen* Oscar Li* Chaofan Tao

Duke University Duke University Duke University
cfchen@cs.duke.edu oscarli@alumni.duke.edu chaofan.tao@duke.edu

Alina Jade Barnett Jonathan Su Cynthia Rudin

Duke University MIT Lincoln Laboratoryt Duke University
abarnett@cs.duke.edu su@ll.mit.edu cynthia@cs.duke.edu



Challenge 3: define interpretability for specific domains and
create methods accordingly, including computer vision.

Fig. 3 | Image from the authors of ref. %, indicating that parts of the test image on the left are similar to prototypical parts of training examples.

The test image to be classified is on the left, the most similar prototypes are in the middle column, and the heatmaps that show which part of the test
image is similar to the prototype are on the right. We included copies of the test image on the right so that it is easier to see to what part of the bird the
heatmaps are referring. The similarities of the prototypes to the test image are what determine the predicted class label of the image. Here, the image
is predicted to be a clay-coloured sparrow. The top prototype seems to be comparing the bird's head to a prototypical head of a clay-coloured sparrow,
the second prototype considers the throat of the bird, the third looks at feathers, and the last seems to consider the abdomen and leg. Credit: Image
constructed by Alina Barnett, Duke University



Encouraging responsible ML governance



Right to Explanation

Article 22
EU GDPR
"Automated individual decision-making,
including profiling"

=> Recital: 71, 72
=> administrative fine: Art. 83 (5) litb
=> Dossier: Automated Decision In Individual Cases, Profiling

1. The data subject shall have the right not to be subject to a decision based solely on automated
processing, including profiling, which produces legal effects concerning him or her or similarly significantly
affects him or her.

=> Article: 4



Slave to the Algorithm? Why a 'Right to an Explanation'Is
Probably Not the Remedy You Are Looking For

16 Duke Law & Technology Review 18 (2017)

67 Pages -« Posted: 24 May 2017 . Last revised: 6 Dec 2017

stories” that have shaped recent attitudes in this domain. Firstly, the law is restrictive, unclear, or even
paradoxical concerning when any explanation-related right can be triggered. Secondly, even navigating this,
the legal conception of explanations as “meaningful information about the logic of processing” may not be
provided by the kind of ML “explanations” computer scientists have developed, partially in response. ML
explanations are restricted both by the type of explanation sought, the dimensionality of the domain and the
type of user seeking an explanation. However, “subject-centric" explanations (SCEs) focussing on particular
regions of a model around a query show promise for interactive exploration, as do explanation systems based
on learning a model from outside rather than taking it apart (pedagogical versus decompositional
explanations) in dodging developers' worries of intellectual property or trade secrets disclosure.



Discussion: What regulations can/will
encourage interpretability?



Rudin’s Proposal # 1

No black box should be deployed when there exists an interpretable
(transparent) model with the same level of performance.

1. No more proprietary models! Not as much
Companies receive compensation for as profit but will be “useful for public good
developing an interpretable model applications would make these problems

appeal to academics and charitable
foundations.”

2. Might reduce industrial participation



Rudin’s Proposal # 2

Organizations that introduce black box models are mandated to report
the accuracy of interpretable modelling methods.

PRO

Identify the accuracy and/or
interpretability trade-off

Encourages use/development of
interpretable models

CONS

Longer development period (finding
and/or interpretable model for
comparison)

Might reduce industrial participation



THE HILL

OPINION > TECHNOLOGY

THE VIEWS EXPRESSED BY CONTRIBUTORS ARE THEIR OWN AND NOT THE VIEW OF THE HILL

How dangerous is Al?
Regulate it before it’s too late

BY CYNTHIA RUDIN, OPINION CONTRIBUTOR - 02/08/23 m m «

5:00 PMET




Conclusion

Rudin proposes why we should strive for interpretable models (especially for HIGH STAKE
DECISIONS):

e Rashomon set argument: consider that the data permit a large set of reasonably accurate
predictive models to exist. Because this set of accurate models is large, we should expect
at least one model that is interpretable.

e If there are many diverse yet good models, it means that algorithms may not be stable; an
algorithm might choose one model, and a small change to that algorithm or to the data
set may yield a completely different (but still accurate) model.



CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS

Qingyuan Zhao ', Trevor Hastie '



Overview:

Background & Motivation
Partial Dependence Plots (PDP)
Mediation Analysis
Conclusions & Discussion



Objectives:

e When & how can we draw causal interpretations from black box algorithms?
e Mediation Analysis: Causal inference under uncertain causal graph
e Useful tools: PDP & Individual Conditional Expectation (ICE)



Motivation



Nature: Some Assumptions

@—> Nature @

Input Y=£AX¢) Outcome
€ = error
f(+) = law of nature




Statistics: Modeling (X, €)

@_’ Nature @
Input Y=£fX ¢) Outcome
Input Y =g(X) Prediction

g(+) = approximation of A(X,¢)



Competing Objectives & Cultures

Prediction Science
Algorithmic Modeling Data Modeling
/ ! L
Black Box Interpretable
Model X Model

- B
Pattern Identification Causal Structure

Why trust data modeling as the proper model of nature when
it is often less accurate? (Breiman, 2001)



Notions of Importance

Prediction Science
Algorithmic Modeling Data Modeling
: Black Box : Interpretable
X Model X Model \

Pattern Identification Causal Structure

Important Variables: Important Variables:
- Determined by association - Focused on implications for intervention or
- Have high impact on model variance counterfactual reasoning
- Are crucial to model performance - Are causally related to outcomes

How can we leverage the powerful algorithmic tools used in prediction to
understand natural relationships? (Zhao, Hastie)



Notions of Importance

Prediction Science
Algorithmic Modeling Data Modeling
: Black klox : Interpretable
X Mode: X Model \

Pattern Identificatioi Causal Structure

Important Variables: Important Variables:
- Determined by association - Focused on implications for intervention or
- Have high impact on model variance counterfactual reasoning
- Are crucial to model performance - Are causally related to outcomes

How can we leverage the powerful algorithmic tools used in prediction to
understand natural relationships? (Zhao, Hastie)



Feature Importance in Black Box Models



Partial Dependence Plots

Prediction
Algorithmic Modeling

- Neural :
X Network

Important Variables:
- Have high impact on model variance
- Are crucial to model performance

Partial Dependence Plot:

Characterizes average relationship between feature
and model prediction

Model agnostic



Partial Dependence Plots

Expected value of g(X), marginalizing XS across the all other features

gs(xs) = Ex, [g(xcy,Xcg)]
= / g(xg,x%)dp(xg)

X,: Variable of interest
X.: Complement of X



Partial Dependence Plots: Example

How does the temperature affect predicted bike rentals?

XS XC
temp hum windspeed
day

0| 0.34 |0.805833  0.160446
1/ 0.36 | 0.696087  0.248539
2| 0.20 | 0.437273  0.248309
3| 0.20 | 0.590435 0.160296
4| 0.23 |0.436957  0.186900

X: Temperature, humidity,
windspeed

Dataset: 2 years of bike rental data

—

Neural
Network

cnt

985
801
1349
1562

1600

Outcome: Total daily bike rentals



Partial Dependence Plots: Example

Calculating Partial Dependence Plot
temp hum windspeed

1. Train model on original dataset day

2. Upsample dataset to generate N 0 088 0803633 0460446

observations for each unique value in 1 0.36 0.696087 0.248539

X_ value
S 2 0.20 0.437273 0.248309

3. Get predictions for upsampled new

3 0.20 0.590435  0.160296
dataset, and average each value of X



Example

Partial Dependence Plots

Predicted Bike Sales By Temperature

Scatter Plot: Temperature and Bike Sales

0
3000 A

5000 A
40

3duapuadap |eiued

2000 A

0.8 0.9

0.7

8000 +

6000
4000 A

2000 A

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
temp

0.1

temp



Partial Dependence Plots: The Math

Expected value of g(X), marginalizing X across the all other features

gs(xs) = Ex, [g(xcy,Xcg)]
= / g(xcy,xg)dP(xg)



Revisiting the Backdoor Criterion

If:
1. Nonodein X a descendent of X
2. X, d-separates X and Y?

Then:
E[Y|do(Xs = z5)] = / E[Y|Xs = a5, Xe = ] dP(zc)
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An Interesting Coincidence? =

) -

If Backdoor Criterion are Satisfied:
1. Modelis causally structured
2. IﬂonodeinAXbadescendentofXS
3. X_d-separates X and Y

Then:
B[Y|do(Xs = o)) = [ EIY|Xs = a5, Xe = e} dP(zc)

—> E[Y|do(Xs = x,)] = gs(Xs)
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An Interesting Coincidence? ¢

If Backdoor Criterion are Satisfied:

Y\ )
\
L

1. Modelis causally structured
2. Nonodein X_.adescendent of X,
3. X_d-separates X and Y

Then:
ElY|do(Xs = zs)] = /E[Y|Xs = zs, Xc = zc| dP(zc)

— E[Y|do(Xs = x,)] = gs(Xs)

Under the right conditions,
PDP allows for causal inference in black box models!



Example 1: GPA->Study Habits

X y

Predicted Hours

Studying Per Week
Student 1 2.82 17
Student 2 4.00 50

Neural Network
Student N 3.58 25
Can PDP extract a causal interpretation between GPA and predicted study habits? Y. Study

Habits




Example 2: Study Habits->GPA

X: Student
Behavior

'

X > Y

s

Neural Network

Student behavior data (weekly hours studying, sleep habits, department,

Xg Hours studying
Xz Student Behavior Data (hours studying, sleep habits, department, etc)
Y: GPA

Can PDP extract a causal interpretation between study and predicted GPA?
Assume the DAG to be accurate

!

Y: GPA




Example 3: Uncertainty

® 0 ®

X Y

s

Student behavior data (weekly hours studying, sleep habits, department,

Xg Hours studying
Xz Student Behavior Data (hours studying, sleep habits, department, etc)
Y: GPA

Can PDP extract a causal interpretation between study and predicted GPA?

X: Student
Behavior

'

Neural Network

!

Y: GPA




Boston Housing: Will People Pay for Better Air?

® 06

s
X: Housing & Location Info (Air quality, median house sq feet, crime rate, etc)
Xg Air Quality
Xz Remaining Housing Info
Y: Median House Price
Author's Assumptions:

1. Data causally structured? Yes
2. Nonodein X_.adescendent of X_? Likely
3. X, d-separates X_and Y? Maybe

X. Housing &
Location Data

'

Various Black Box
Algorithms

!

Y. Housing
Price




Findings: Will People Pay for Better Air?

® ©® ®

?
H
s
X: Student behavior data (weekly hours studying, sleep habits, department, etc)
Xg Hours studying
X; Student Behavior Data (hours studying, sleep habits, department, etc)
Y: GPA
.
Author's Assumptions

Data causally structured? Yes
No node in X_.a descendent of X_? Likely
X, d-separates X  and Y? Maybe
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Author's Conclusion:

Plausible evidence of causal
nonsmooth relationship

Additional analysis required to
make any causal claim!
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Finer Analysis



Required Assumptions Real Life
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What if the Backdoor Criteria are Not Verifiable

Option A: Accepting the Uncertainty Option B: Probing for further evidence
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Mediation Analysis

Whatif X _contains (or may contain) descendants of X?

Causal Interpretations:

Total Effect: The causal impact of X_ on Y in total
Controlled Direct Impact: The causal impact of X_on Y in for a fixed value of
descendent nodes

Uncertain DAG



Mediation Analysis

Whatif X _contains (or may contain) descendants of X?

Causal Interpretations:
Total Effect: The causal impact of X_ on Y in total
Controlled Direct Impact: The causal impact of X_ on Y in for a fixed value X, = x,,

Notation:
X;: Variable of interest
X, : Causal descendent variables of X,

M
X,.: Set of variables assumed to satisfy backdoor criterion for set X =
X, =Xy, X ¢,

Y=g(Xy, X X, &)

Uncertain DAG



Mediation Analysis

What if X _ contains (or may contain) descendants of X ?

Causal Interpretations:
Total Effect: The causal impact of X_on Y in total

TE = E[f(xs, h(.’lis, Xc, GM), Xc, 6)]—E[f(.’17.’5, h(xfg, Xc, GM), Xc, 6)]

Controlled Direct Effect: The causal impact of X_on Y in for a fixed value X, = x,,

CDE(LBM) = E[f(.’Es, T M, Xc, 6)]—E[f(.’1,'fs, T M, Xc, 6)]

Notation:
X_: Variable of interest
X, : Causal descendent variables of X

X,.: Set of variables assumed to satisfy backdoor criterion for set X, -

X, =hX, X &,)
Y=g(X, X X, &)

]

Uncertain
Mediated DAG



Mediation Analysis

What if X _ contains (or may contain) descendants of X ?

Causal Interpretations:

Total Effect: The causal impact of X_on Y in total
Controlled Direct Impact: The causal impact of X_on Y in for a fixed value of
descendent nodes

Important :

If X . does satisfies backdoor criterion for X, TE=CDE

If X.does satisfies backdoor criterion for X, PDP can visualize TE
If TE2CDE, PDP cannot visualize CDE

Uncertain
Mediated DAG



median housing price (MEDV)
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Individual Conditional Expectation (ICE) /-

ICE

ICE of Random Forest
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nitrix oxides concentration (NOX)

Searching for Mediating Variables

Key Idea
° ICE Marginalizes E(g(X)) across individual X,
° PDP is the average of each ICE, as it marginalizes E(g(X)) across whole X .

° Consistent curves provides evidence that no X, is mediating the relationship
between X _.and Y

° Inconsistent curves suggest evidence there are mediating X, variables

Boston

- Consistent ICE lines show an additive relationship between NOX and MEDV
- NOX may have a non-smooth causal effect on MEDV



Conclusion & Discussion



Conclusions

ML algorithms are not deterministically uninterpretable. Under following
conditions we can derive causal interpretations from black box models:

1. A good predictive model, so the estimated black-box function g is (hopefully)
close to the law of nature f.

2. Some domain knowledge about the causal structure to assure the back-door
condition is satisfied. Not Trivial!

3. Access to visualization tools such as the PDP and its extension ICE



Given the author's analysis of housing prices in Boston, do you
consider their models of housing price to be interpretable?



