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Setup

® Predictive classifier f
® Instance x (observation), y (outcome)

® Example
o Xx: people
o y: loan prediction



Counterfactual (CF) Explanations

Gender Income Education Loan
prediction

Query unit F $100,000 Bachelor’s 0
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Counterfactual (CF) Explanations

Gender Income Education Loan
prediction
Query unit F $100,000 Bachelor’s 0
CF1 M $100,000 Bachelor’s 1
CF2 M $1,100,000 Bachelor’s e 1
CF3 M $100,000 Master’s 1

Question: what are the flaws of these
explanations?



Counterfactual (CF) Explanations

Gender Income Education Loan
prediction
Query unit F $100,000 Bachelor’s 0
CF1 M $100,000 Bachelor’s 1
CF2 M $1,100,000 Bachelor’s e 1
CF3 M $100,000 Master’s 1
CF4 F $110,000 Master’s 1

What if we also saw CF4?



How would we solve this
problem?



Setup

® Predictive classifier f

® Instance x (observation), y (outcome)



Setup

® Predictive classifier f

® Instance x (observation), y (outcome)

® Goal: create counterfactuals {c1, ..., ck} that are

O Diverse : different from one another

Gender Income Education Loan
prediction
Query unit F $100,000 Bachelor’s 0
Bad CF M $100,000 Bachelor’s 1
Good CF F $100,100 Bachelor’s 1




Setup

® Predictive classifier f

® Instance x (observation), y (outcome)

® Goal: create counterfactuals {c1, ..., ck} that are

O Proximal : close to the original instance

Gender Income Education Loan
prediction
Query unit F $100,000 Bachelor’s 0
Bad CF M $1,100,000 Bachelor’s 1
Good CF F $100,100 Bachelor’s 1




Setup

® Predictive classifier f
® Instance x (observation), y (outcome)

® Goal: create counterfactuals {c1, ..., ck} that are

O Sparse : do not involve too many features

Gender Income Education Loan
prediction
Query unit F $100,000 Bachelor’s 0
Bad CF M $100,100 Master’s 1
Good CF F $100,100 Bachelor’s 1




Optimization

k k
1
C(x)=argminz E yloss(f(ci),y)+% E dist(cj, x)
C1,---,Ck =1 i=1

— Ap dpp_diversity(cy, . .., cx)



Optimization

k k
3 — 1 A1 .
C(x) = Ek ; yloss(f(c;i),y) + P ; dist(c;, x)

— Ap dpp_diversity(cy, . .., cx)

Find the k counterfactuals
that minimize the
following objective



Optimization
Check loss between the true
outcome and the predicted
outcome given the
counterfactual

C(x) = arg min
C1,...,CL

X =

Il
Sy

1

k
yloss(f(c;), y)|+ % Z dist(cj, x)
i=1

— Ap dpp_diversity(cy, . .., cx)



Optimization
Check distance between the

counterfactual and the given
instance

Clreens

k k
3 ;A A1 .
C(x) = argmirklz Z;‘ yloss(f(c;i),y) + T ; dist(c;, x)

— Ap dpp_diversity(cy, . .., cx)



Optimization

k k
;A A .
C(x) = argmmz ._E yloss(f(c;i),y) + ?1 ._E dist(c;, x)
—i=1 =1

C1,---,Ck

— Az dpp_diversity(cy, . .., cx)

|

Increase how different
counterfactuals are from one
another




Practical considerations

® \What should yloss be?

O A valid counterfactual only needs to change the prediction to
pass some threshold

O Don’t need to make prediction 0.49 — 0.99
O Make a prediction of 0.49 — 0.51
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Practical considerations

® \What should yloss be?

O A valid counterfactual only needs to change the prediction to
pass some threshold

O Don’t need to make prediction 0.49 — 0.99
O Make a prediction of 0.49 — 0.51

® \What should distance be?

dcont |cp — xpl

dcont P=1 MADP

dist_cont(c, x) =



Practical considerations

® \What should yloss be?

O A valid counterfactual only needs to change the prediction to
pass some threshold

O Don’t need to make prediction 0.49 — 0.99
O Make a prediction of 0.49 — 0.51

® \What should distance be?

d dear

Z I(c? # xP),

p=1

cont p — P
je* —x¥] dist_cat(c, x) =
dcont p=1 MADp dcat

dist_cont(c, x) =



Practical considerations

® \What should yloss be?

O A valid counterfactual only needs to change the prediction to
pass some threshold

O Make a prediction of 0.49 --> 0.51, not 0.49 --> 0.99
® \What should distance be?

® How do we induce sparsity?
O Post-hoc, greedy approach

O Keep adding values of cont. features back in until predicted
class change



Sparsity Example

Query unit
Original CF
Iteration 1

lteration 2

Gender

Income

$100,000
$1,100,000
$1,100,000

$100,000

Education

Bachelor’s

Master’s

Bachelor’s

Bachelor’s

Loan
prediction

0

1



How should we evaluate counterfactuals?

® Validity: the counterfactuals' predicted outcome is different than original
outcome
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® Validity: the counterfactuals' predicted outcome is different than original
outcome

® Proximity: the counterfactuals should be similar to the query instance



How should we evaluate counterfactuals?

® Validity: the counterfactuals' predicted outcome is different than original
outcome

® Proximity: the counterfactuals should be similar to the query instance

® Sparsity: the counterfactuals should not require changing too many
covariates



How should we evaluate counterfactuals?

® Validity: the counterfactuals' predicted outcome is different than original
outcome

® Proximity: the counterfactuals should be similar to the query instance

® Sparsity: the counterfactuals should not require changing too many
covariates

® Diversity: the counterfactuals should be different from one another



Experiments

® Baseline methods for explaining non-linear models
O SingleCF

Wachter’s algorithm — ours but without diversity term and only one counterfactual



Experiments

® Baseline methods for explaining non-linear models
O SingleCF
O RandomlInitCF

Wachter’s algorithm with k random starting points for optimizer



Experiments

® Baseline methods for explaining non-linear models
O SingleCF
O RandomlInitCF
O NoDiversityCF

Our algorithm but with multiple counterfactuals and no diversity term



Experiments

® Baseline methods for explaining non-linear models
O SingleCF
O RandomlInitCF
O NoDiversityCF

® Baseline methods for explaining linear models
O MixedIntegerCF



Experiments

® Baseline methods for explaining non-linear models
O SingleCF
O RandomlnitCF
O NoDiversityCF

® Baseline methods for explaining linear models
O MixedIntegerCF

® Datasets
O Adult income: Classify whether adult's income is over $50,000
O COMPAS: Classify whether criminals will re-offend
O German credit: Determine whether person has good/bad credit
O LendingClub: Determine whether person will pay loan back or not



Explaining Non-linear Models
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Other methods return counterfactuals that don’t
necessarily change the predicted outcome
e Note: NoDiverseCF is the same as DiverseCF but
without diversity
e Why does no diversity lead to such bad CFs?

—&— DiverseCF NoDiverseCF —*— RandomInitCF —5— SingleCF
-<- DiverseCF-Sparse NoDiverseCF-Sparse -»¢- RandomlInitCF-Sparse




Explaining Non-linear Models
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Explaining Non-linear Models

y Categorical-Proximity Continuous-Proximity Continuous-Sparsity
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Explaining Linear Models

% Valid CFs
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Explaining Linear Models
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Explaining Linear Models

¢ Categorical-Proximity Continuous-Proximity Continuous-Sparsity
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Qualitative Evaluation

Adult HrsWk  Education Occupation WorkClass Race AgeYrs  MaritalStat  Sex
(?Etgclg;lel:nf :; 0K) 45.0 HS-grad Service Private White  22.0 Single Female
— Masters — — — 65.0 Married Male
Counterfactuals - Doctorate — Self-Employed — 34.0 - —
(outcome: >50K) 33.0 — White-Collar — — 47.0 Married —
57.0 Prof-school — - — — Married —




Qualitative Evaluation

LendingClub EmpYrs Inc$ #Ac CrY¥rs LoanGrade HomeOwner Purpose  State
(?)Etgclgielf’g:;aum 7.0 699960 40 260 D Mortgage Debt NY
= 61477.0 = = B = Purchase —
Counterfactuals 10.0 83280.0 1.0 23.0 A = = X
(outcome: Paid) 10.0 69798.0 — 40.0 A — = —
10.0 130572.0 — - A Rent — ==




Qualitative Evaluation

COMPAS PriorsCount  CrimeDegree Race Age  Sex
(?)Istgcl:;lem&ﬁl Recidivate) 10.0 Felony African-American  >45  Female
= - Caucasian = =
Counterfactuals 0.0 -~ — = Male
(outcome: Won’t Recidivate) | 0.0 - Hispanic = —
9.0 Misdemeanor — = et




Explaining Local Decision Boundary
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Explaining Local Decision Boundary
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Explaining Local Decision Boundary

Decision boundary

X2




Explaining Local Decision Boundary

Decision boundary

New goal: can we predict fs
outcomes using
counterfactual and a simpler
model (e.g., 1-NN)?

X2




Approximating
Decision Boundaries

o For different distances from original input
Train models to predict fs outcomes with
discovered counterfactuals

o DiverseCF: ours with 1-NN
o NoDiverseCF: no diversity term with 1-NN
o RandomiInitCF

e Also compare with LIME
Evaluate on F1 score



0.5 MAD 1 MAD 2 MAD

Approximating
Decision Boundaries @*ﬁ il A

o For different distances from original input <:°
Train models to predict fs outcomes with

discovered counterfactuals
o DiverseCF: ours with 1-NN

o NoDiverseCF: no diversity term with 1-NN 10

o RandomInitCF Bosf

e Also compare with LIME el =
E 0.4
Evaluate on F1 score g o2
Overall, DiCE performs better
o Suggests it is better at finding local decision Lo
boundary 2
Zo

O > ﬁ
7372 6 8 10 12 4 6 8 10 12 4 6 8 10
#CFs #CFs #CFs
—&— DiverseCF: CF_class —»%— RandomlInitCF: CF_class
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Causal Feasibility of CF Examples

® Potential counterfactual actions
O Get married and get a master's degree and increase income by $50,000

O Assumes age stays constant
® Actionable counterfactuals require time to make changes

® How can we design counterfactual generation engines to account for such
causal dependencies between variables?

® Question for future research



Appendix



DPP Diversity

® AlexKulesza,BenTaskar,etal.2012.Determinantal point processes for
machine learning. Foundations and Trends® in Machine Learning 5, 2—-3
(2012), 123—-286.



Counterfactual Explanations
Can Be Manipulated

Slack, Dylan, Anna Hilgard, Himabindu Lakkaraju, and Sameer Singh.
"Counterfactual explanations can be manipulated." Advances in neural information

processing systems 34 (2021)



Outline

e Background
o Counterfactual explanation
o Recourse
o Recourse fairness
e Overview of the paper
o Key points
o Setup
o  Obijective and training

e Experiments and results
e Conclusions
e Appendix



Background

e Counterfactual Explanations:

o Adata point close to the original input
o Predicted to be positive by the model



Background

Counterfactual Explanations:

(@)

(@)

Objective in counterfactual algorithms:

A data point close to the original input

Predicted to be positive by the model

Denied Loan
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Background

Counterfactual Explanations:

(@)

(@)

Objective in counterfactual algorithms:

A data point close to the original input

Predicted to be positive by the model

Model f

Denied Loan
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Background

Counterfactual Explanations:

(@)

(@)

Objective in counterfactual algorithms:

Gz, xer) = N - (flzer) — 1)° + d(z, Ter)

A data point close to the original input

Predicted to be positive by the model

Model f

Denied Loan
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Background

e Counterfactual Explanations:

o Adata point close to the original input
o Predicted to be positive by the model

e Objective in counterfactual algorithms:

Gz, xer) =\ - (flzer) — 1)° Hd(z, zer)

=

Encourages the desired
outcome probability by the
model

Encourages proximity

Model f

Denied Loan

slideslive
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Background

e Recourse: The difference between the original data point and the
counterfactual



Background

e Recourse: The difference between the original data point and the
counterfactual

e Example:
o A 32 year-old male who wants to get a loan of $1243 for a duration of 24 months

!

32
$1243
24

Loan Denied



Background

e Recourse: The difference between the original data point and the
counterfactual

e Example:
o A 32 year-old male who wants to get a loan of $1243 for a duration of 24 months
o Counterfactual explanation: Had he been 2.5 years older and requested $210 less for a
duration two months shorter, he would have been eligible for the loan.

CE + 2.5 years
- $210

32 + 2 months
$1243
24

Loan Denied Accepted



Background

What if the counterfactual explanations return recourses that are easier to achieve
for the non-protected group?

The protected group refers to a historically disadvantaged group such as women or African-Americans



Background

Unfairness in counterfactuals



How would you solve this problem?



Background

Amodel f:x — [0, 1] is recourse fair if:
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Non-protected subset of
the dataset with negative
outcome



Background

Amodel f:x — [0, 1] is recourse fair if:

B, ppe [d (2, A(2))] — By ope [d (2, A())]| <7




Background

Amodel f:x — [0, 1] is recourse fair if:

B, oy [d, Al2))] — By opye [d (2, A(z))]| <7

Distance
function



Background

Amodel f:x — [0, 1] is recourse fair if:

‘Eic,\pﬁg

/

Protected subset of
the dataset with
negative outcome

d(z, Ax))] - E,

~

o d (@, A(@)]| < 7

N\

Non-protected subset of
the dataset with negative
outcome



Background

Recourse fairness:

]ECL’NDZ,‘-’g d (z, A(x))] — Exwpggg ld(@m; Alax))|| <7

The costs of recourses for the protected and non-protected group should be close.



Key points of the paper

e Shows that counterfactual algorithms are not robust.
e |Introduces a training objective for adversarial models.
e The adversarial models manipulate counterfactual explanations.



Key points of the paper

Counterfactual explanation search can converge to different local minima
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Key points of the paper

Counterfactual explanation search can converge to different local minima

15
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Key points of the paper

Counterfactual explanation search can converge to different local minima

15

1.0 4

" Slightly
0.0 perturbed : X+ 06
input : \A(x + 6)

(a) Training with BCE Objective (b) Training Adversarial Model



Key points of the paper

Counterfactual explanation search can converge to different local minima

15

Gonverge to the
same minima

0.5 A

X+ 6
\é(x+6)

0.0 A

4 =3 -2 =i 0 1 2 i =3 Y =1 0 1 2

(a) Training with BCE Objective (b) Training Adversarial Model



Key points of the paper . for th

. ' o perturbed input is
Counterfactual explanation search can converge to different local minima easier to achieve

15

1.0 4

0.5 A

X+ 6
\4(x +0)

0.0 A

-1.0

-4 -3 =2 -1 0 1 2

(a) Training with BCE Objective (b) Training Adversarial Model

—4 -3



How is this a vulnerability?



Counterfactual explanations can be manipulated

Example:

* w

Age: 34 32 o
Amount: $1842 $1243 Loan Denied
Duration: 36 24

[ Counterfactual Explanation ]

v v
+2.2years + 2.5years
- $310 - $210 Accepted

+o0omonth  + 2 months



Counterfactual explanations can be manipulated

Example:

o [
Age: 34 32 —> 32.5 )
Amount: $1842 $1243 $1243 Loan Denied
Duration: 36 24 24
[ Counterfactual Explanation ]
+2.2years + 2.5years + 0 years
- $310 - $210 - $15 Accepted

+o0omonth  + 2 months + 1 month



Setup

Adversarial model Model auditor

Biased towards the non-protected group e Makes sure the model is recourse fair
e Passes the audits
e Produces very low cost counterfactuals for

the non-protected group



Training objective for adversarial model

Fairness

Unfairness

Small perturbation
Accuracy

Perturbed input should be a
counterfactual

[ ) (] ®
Age: 34 32 —> 32.5
Amount:  $1842 $1243 O $1243 Loan Denied
Duration: 36 24 24
[ Counterfactual Explanation ]
. .
+2.2vyears + 2.5 years + 0 years
- $310 - $210 - $15 Accepted

+0omonth  + 2 months + 1 month



Training objective for adversarial model

e Fairness: Model should be fair according to this definition

Eenpye [d (2, A(x))] — Epoppe [d (2, A(zc))]’ <r



Training objective for adversarial model

Unfairness: Perturbed non-protected data leads to a lower cost recourse

By [d (2, A())] > E,oppe [d (2, Al + 0))]



Training objective for adversarial model

e Small perturbation: Perturbation vectors should be small

minimize E;, pred(x, x + 0)



Training objective for adversarial model

e Accuracy: Minimize the classification loss



Training objective for adversarial model

e Perturbed input should be a counterfactual

minimize B, pme (f(z + 6) — 1)?



Training the adversarial model

1. First stage:

o Small perturbations

o Counterfactuals under perturbations

o Accuracy

o Passes the perturbations and model weights to the second stage
2. Second stage:

o Fairness

o Unfairness

o Accuracy



Training the adversarial model

1. First stage:

0 := arg min ngn E(H, D) .n Emeﬂgg (f(ZC 1 5) — 1)2 AL EwNDQEg d(.’B, x + 5)
o



Training the adversarial model

1. First stage:

6 := arg min min |£(6, D)|+ E, ppe (f(x +0) — 1)? + Egnpie d(, @+ 0)

©

Classification loss




Training the adversarial model

1. First stage:

0 := arg min mein E(@, D) n Emwpsgg (f(:n 1 5) — 1)2 AL Eme,’}Eg d(.’B, x + 5)
5
Perturbed input to be a
counterfactual




Training the adversarial model

1. First stage:

0 := arg min mein E(O, D) .n EmeQgg (f(:n 1 5) — 1)2 AL Eme,‘}gg d(:IJ, x + 5)
o

\

Perturbation should be
small




Training the adversarial model

1. First stage:

0 := arg min mein E(Q, D) .n Emeﬂgg (f(:n 1 5) — 1)2 AL Eme,’}Eg d(.’l), x + 5)
o

2. Second stage:

2
6 := arg min £(60, D)+E, ppe [d (2, As(x + 8))]+ (Emwgsg [d(z, Ag())] — Eprppee [d (2, Ae(ﬂ?))])
()

s.t. Egpopre [d(x, Ag(x +9))] < B, pm [d(x, Ag(x))]



Experiments

e Dataset
o Used two datasets: “German Credit” and “Communities and Crimes”
o Strong incentives to “game the system” in both datasets



Experiments

e Manipulated Model
o 4 |layer feed-forward neural network
o Tanh activation function
o Adam optimizer and cross entropy loss



How do you expect the accuracy to be
impacted in the manipulated model?



Results

Impact of the manipulated model on accuracy:

Comm. & Crime German Credit

Acc 18] Acc |16]]1

Unmodified 81.2 . gLl &

Wachter et al. 80.9 0.80 72.0 0.09
Sparse Wachter  77.9 0.46 ans 2.50
Prototypes 79.2 0.46 69.0 221
DiCE 81.1 1.73 7.2 0.09




Results

e Metrics
o Effectiveness of manipulation

E, pre [d(z, A
Cost reduction := D“Pg[ ( (x))]

ExNDggg [d(az, A(m + 5))]



Results

e Metrics
o Effectiveness of manipulation

Table 2: Recourse Costs of Manipulated Models: Counterfactual algorithms find similar cost
recourses for both subgroups, however, give much lower cost recourse if d is added before the search.

Communities and Crime German Credit
Wach. S-Wach. Proto. DIiCE Wach. S-Wach. Proto. DiCE
Protected 35.68 54.16 22.35 49.62 5.65 8.35 10.51 6.31
Non-Protected 35.31 52.05 22.65 42.63 5.08 8.59 13.98 6.81
Disparity 0.37 2,12 0.30 6.99 075 0.24 0.06 0.5
Non-Protected+d 1.76 22.59 8.50 9.57 3.16 4.12 4.69 3.38

Cost reduction 20.1x 23% 255% 4% 1.8x 2.05% 2.2% 2:0%




Results

e Metrics

o  Oultlier factor of counterfactuals: How realistic are the counterfactuals returned by the model?

d(A(z), ao)

minw;éaoepposﬂ{VxEDpos |f(x):1}d(a07 m)

P(A(z)) =




Results

e Metrics

o  Oultlier factor of counterfactuals: How realistic are the counterfactuals returned by the model?

d(A(z), ao)

mjna:;éao € DposN{ VL EDpos |f(9:):1}d(a'07 w)

P(A(z)) =

The local outlier factor of the counterfactuals with respect to the positively
classified data (Breunig et al. “LOF: identifying density-based local outliers”)

Will be >1 if the counterfactual is an outlier.


https://dl.acm.org/doi/10.1145/335191.335388

Results

Metrics

(@)

Outlier factor of counterfactuals: How realistic are the counterfactuals returned by the model?
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Conclusions

e The paper shows that counterfactual explanations can be manipulated.

e They train an adversarial model that produces seemingly fair recourses but is
in fact biased towards the non-protected group.

e They show that the manipulations are effective and realistic.



Appendix



How to train the adversarial model if the counterfactual
algorithm is black box?

Lemma 3.1 Assuming the counterfactual explanation Ag(x) follows the form of the objective in
d

Equation 1, erG (x, Ag(x)) = 0, and m is the number of parameters in the model, we can write

the derivative of counterfactual explanation A with respect to model parameters 0 as the Jacobian,

%Ag(w) = — G (:E.Ag(w))

G (w,Ao@)] [0 8 2 3
day




