Srikar Katta Ghazal Khalighinejad

Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations

Mothilal, Ramaravind K., Amit Sharma, and Chenhao Tan. "Explaining machine learning classifiers through diverse counterfactual explanations." *Proceedings of the 2020 conference on fairness, accountability, and transparency*. 2020.

• Predictive classifier f

• Instance **x** (observation), **y** (outcome)

- Example
 - **x**: people
 - y: loan prediction

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
CF1	М	\$100,000	Bachelor's	 1
CF2	М	\$1,100,000	Bachelor's	 1
CF3	М	\$100,000	Master's	 1

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
CF1	М	\$100,000	Bachelor's	 1
CF2	М	\$1,100,000	Bachelor's	 1
CF3	М	\$100,000	Master's	 1

Question: what are the flaws of these explanations?

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
CF1	М	\$100,000	Bachelor's	 1
CF2	М	\$1,100,000	Bachelor's	 1
CF3	М	\$100,000	Master's	 1
CF4	F	\$110,000	Master's	 1

What if we also saw CF4?

How would we solve this problem?

- Predictive classifier *f*
- Instance **x** (observation), **y** (outcome)

- Predictive classifier f
- Instance **x** (observation), **y** (outcome)
- Goal: create counterfactuals {c1, ..., ck} that are

O Diverse : different from one another

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
Bad CF	М	\$100,000	Bachelor's	 1
Good CF	F	\$100,100	Bachelor's	 1

- Predictive classifier *f*
- Instance **x** (observation), **y** (outcome)
- Goal: create counterfactuals {c1, ..., ck} that are

Proximal : close to the original instance

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
Bad CF	М	\$1,100,000	Bachelor's	 1
Good CF	F	\$100,100	Bachelor's	 1

- Predictive classifier *f*
- Instance **x** (observation), **y** (outcome)
- Goal: create counterfactuals {c1, ..., ck} that are

• Sparse : do not involve too many features

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
Bad CF	М	\$100,100	Master's	 1
Good CF	F	\$100,100	Bachelor's	 1

$$C(\mathbf{x}) = \underset{\mathbf{c}_{1},...,\mathbf{c}_{k}}{\arg\min \frac{1}{k}} \sum_{i=1}^{k} \operatorname{yloss}(f(\mathbf{c}_{i}), y) + \frac{\lambda_{1}}{k} \sum_{i=1}^{k} \operatorname{dist}(\mathbf{c}_{i}, \mathbf{x}) - \lambda_{2} \operatorname{dpp_diversity}(\mathbf{c}_{1}, \dots, \mathbf{c}_{k})$$

$$C(\mathbf{x}) = \arg\min_{\mathbf{c}_1, \dots, \mathbf{c}_k} \frac{1}{k} \sum_{i=1}^k \operatorname{yloss}(f(\mathbf{c}_i), y) + \frac{\lambda_1}{k} \sum_{i=1}^k \operatorname{dist}(\mathbf{c}_i, \mathbf{x})$$
$$-\lambda_2 \operatorname{dpp_diversity}(\mathbf{c}_1, \dots, \mathbf{c}_k)$$

Find the *k* counterfactu that minimize the following objective

Check distance between the counterfactual and the given instance

$$C(\mathbf{x}) = \underset{\mathbf{c}_{1},\ldots,\mathbf{c}_{k}}{\arg\min \frac{1}{k}} \sum_{i=1}^{k} \operatorname{yloss}(f(\mathbf{c}_{i}), y) + \frac{\lambda_{1}}{k} \sum_{i=1}^{k} \operatorname{dist}(\mathbf{c}_{i}, \mathbf{x}) - \lambda_{2} \operatorname{dpp_diversity}(\mathbf{c}_{1},\ldots,\mathbf{c}_{k})$$

$$C(\mathbf{x}) = \underset{c_{1},...,c_{k}}{\arg\min} \frac{1}{k} \sum_{i=1}^{k} \operatorname{yloss}(f(c_{i}), y) + \frac{\lambda_{1}}{k} \sum_{i=1}^{k} \operatorname{dist}(c_{i}, \mathbf{x})$$
$$-\lambda_{2} \operatorname{dpp_diversity}(c_{1}, \dots, c_{k})$$
Increase how different counterfactuals are from one another

- What should *yloss* be?
 - A valid counterfactual only needs to change the prediction to pass some threshold
 - $\,\circ\,$ Don't need to make prediction 0.49 \rightarrow 0.99
 - ${\rm O}\,$ Make a prediction of 0.49 ${\rightarrow}$ 0.51

- What should yloss be?
 - A valid counterfactual only needs to change the prediction to pass some threshold
 - $\,\circ\,$ Don't need to make prediction 0.49 \rightarrow 0.99
 - $\circ~$ Make a prediction of 0.49 $\rightarrow 0.51$

- What should yloss be?
 - A valid counterfactual only needs to change the prediction to pass some threshold
 - $\,\circ\,$ Don't need to make prediction 0.49 \rightarrow 0.99
 - $\circ~$ Make a prediction of 0.49 $\rightarrow 0.51$
- What should distance be?

dist_cont(
$$\boldsymbol{c}, \boldsymbol{x}$$
) = $\frac{1}{d_{cont}} \sum_{p=1}^{d_{cont}} \frac{|\boldsymbol{c}^p - \boldsymbol{x}^p|}{MAD_p}$

- What should yloss be?
 - A valid counterfactual only needs to change the prediction to pass some threshold
 - $\,\circ\,$ Don't need to make prediction 0.49 \rightarrow 0.99
 - $\circ~$ Make a prediction of 0.49 $\rightarrow 0.51$
- What should distance be?

$$\operatorname{dist_cont}(\boldsymbol{c}, \boldsymbol{x}) = \frac{1}{d_{cont}} \sum_{p=1}^{d_{cont}} \frac{|\boldsymbol{c}^p - \boldsymbol{x}^p|}{MAD_p} \qquad \operatorname{dist_cat}(\boldsymbol{c}, \boldsymbol{x}) = \frac{1}{d_{cat}} \sum_{p=1}^{d_{cat}} I(\boldsymbol{c}^p \neq \boldsymbol{x}^p),$$

- What should yloss be?
 - A valid counterfactual only needs to change the prediction to pass some threshold
 - Make a prediction of 0.49 --> 0.51, not 0.49 --> 0.99
- What should distance be?
- How do we induce sparsity?
 - Post-hoc, greedy approach
 - Keep adding values of cont. features back in until predicted class change

Sparsity Example

	Gender	Income	Education	 Loan prediction
Query unit	F	\$100,000	Bachelor's	 0
Original CF	М	\$1,100,000	Master's	 1
Iteration 1	М	\$1,100,000	Bachelor's	 1
Iteration 2	М	\$100,000	Bachelor's	 1

• Validity: the counterfactuals' predicted outcome is different than original outcome

- Validity: the counterfactuals' predicted outcome is different than original outcome
- *Proximity*: the counterfactuals should be similar to the query instance

- Validity: the counterfactuals' predicted outcome is different than original outcome
- *Proximity*: the counterfactuals should be similar to the query instance
- Sparsity: the counterfactuals should not require changing too many covariates

- Validity: the counterfactuals' predicted outcome is different than original outcome
- *Proximity*: the counterfactuals should be similar to the query instance
- Sparsity: the counterfactuals should not require changing too many covariates
- *Diversity*: the counterfactuals should be different from one another

Baseline methods for explaining non-linear models
 SingleCF

Wachter's algorithm – ours but without diversity term and only one counterfactual

Baseline methods for explaining non-linear models
 SingleCF

RandomInitCF

Wachter's algorithm with *k* random starting points for optimizer

- Baseline methods for explaining non-linear models
 - SingleCF
 - RandomInitCF
 - NoDiversityCF

Our algorithm but with multiple counterfactuals and no diversity term

- Baseline methods for explaining non-linear models
 - SingleCF
 - RandomInitCF
 - NoDiversityCF
- Baseline methods for explaining linear models
 - MixedIntegerCF

Baseline methods for explaining non-linear models

- SingleCF
- RandomInitCF
- NoDiversityCF
- Baseline methods for explaining linear models

MixedIntegerCF

Datasets

- Adult income: Classify whether adult's income is over \$50,000
- COMPAS: Classify whether criminals will re-offend
- German credit: Determine whether person has good/bad credit
- LendingClub: Determine whether person will pay loan back or not

Explaining Non-linear Models

Explaining Non-linear Models

Explaining Non-linear Models

Explaining Linear Models

Explaining Linear Models

Explaining Linear Models

Qualitative Evaluation

Adult	HrsWk	Education	Occupation	WorkClass	Race	AgeYrs	MaritalStat	Sex
Original input (outcome: <=50K)	45.0	HS-grad	Service	Private	White	22.0	Single	Female
971	-	Masters			10 7 - 10	65.0	Married	Male
Counterfactuals	_	Doctorate	_	Self-Employed	3 <u></u>	34.0	<u> </u>	
(outcome: >50K)	33.0		White-Collar	—	1.	47.0	Married	
	57.0	Prof-school	-	—	—	_	Married	_

Qualitative Evaluation

LendingClub	EmpYrs	Inc\$	#Ac	CrYrs	LoanGrade	HomeOwner	Purpose	State
Original input (outcome: Default)	7.0	69996.0	4.0	26.0	D	Mortgage	Debt	NY
	—	61477.0	—	—	В		Purchase	—
Counterfactuals	10.0	83280.0	1.0	23.0	А	_	<u> </u>	TX
(outcome: Paid)	10.0	69798.0		40.0	А	—		·
800 Series (R. 1196) (T. 1442-688)	10.0	130572.0	<u>27</u>		А	Rent	<u></u>	_

Qualitative Evaluation

COMPAS	PriorsCount	CrimeDegree	Race	Age	Sex
Original input (outcome: Will Recidivate)	10.0	Felony	African-American	>45	Female
	—	-	Caucasian	—	-
Counterfactuals	0.0		_	_	Male
(outcome: Won't Recidivate)	0.0	 .	Hispanic	_	—
	9.0	Misdemeanor		<u> </u>	_

New goal: can we predict *f*'s outcomes using counterfactual and a simpler model (e.g., 1-NN)?

Approximating Decision Boundaries

- For different distances from original input
- Train models to predict *f*'s outcomes with discovered counterfactuals
 - DiverseCF: ours with 1-NN
 - NoDiverseCF: no diversity term with 1-NN
 - RandomInitCF
- Also compare with *LIME*
- Evaluate on F1 score

Approximating Decision Boundaries

- For different distances from original input
- Train models to predict *f*'s outcomes with discovered counterfactuals
 - DiverseCF: ours with 1-NN
 - NoDiverseCF: no diversity term with 1-NN
 - RandomInitCF
- Also compare with LIME
- Evaluate on F1 score
- Overall, DiCE performs better
 - Suggests it is better at finding local decision boundary

Causal Feasibility of CF Examples

Potential counterfactual actions

Get married and get a master's degree and increase income by \$50,000
Assumes age stays constant

- Actionable counterfactuals require time to make changes
- How can we design counterfactual generation engines to account for such causal dependencies between variables?
- Question for future research

Appendix

DPP Diversity

 AlexKulesza, BenTaskar, etal. 2012. Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning 5, 2–3 (2012), 123–286.

Counterfactual Explanations Can Be Manipulated

Slack, Dylan, Anna Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual explanations can be manipulated." *Advances in neural information processing systems* 34 (2021)

Outline

- Background
 - Counterfactual explanation
 - Recourse
 - Recourse fairness
- Overview of the paper
 - Key points
 - Setup
 - Objective and training
- Experiments and results
- Conclusions
- Appendix

- Counterfactual Explanations:
 - A data point close to the original input
 - Predicted to be positive by the model

- Counterfactual Explanations:
 - A data point close to the original input
 - Predicted to be positive by the model
- Objective in counterfactual algorithms:

Model f

- Counterfactual Explanations:
 - A data point close to the original input
 - Predicted to be positive by the model
- Objective in counterfactual algorithms:

- Counterfactual Explanations:
 - A data point close to the original input
 - Predicted to be positive by the model
- Objective in counterfactual algorithms:

Model f

- Counterfactual Explanations:
 - A data point close to the original input
 - Predicted to be positive by the model
- Objective in counterfactual algorithms:

$$G(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{cf}}) = \lambda \cdot \left(f(\boldsymbol{x}_{\mathrm{cf}}) - 1\right)^2 + d(\boldsymbol{x}, \boldsymbol{x}_{\mathrm{cf}})$$

- Counterfactual Explanations:
 - A data point close to the original input
 - Predicted to be positive by the model
- Objective in counterfactual algorithms:

$$G(\boldsymbol{x}, \boldsymbol{x}_{\rm cf}) = \lambda \cdot (f(\boldsymbol{x}_{\rm cf}) - 1)^2 + d(\boldsymbol{x}, \boldsymbol{x}_{\rm cf})$$

Encourages the desired outcome probability by the model

Encourages proximity

Model f

• Recourse: The difference between the original data point and the counterfactual

- Recourse: The difference between the original data point and the counterfactual
- Example:
 - A 32 year-old male who wants to get a loan of \$1243 for a duration of 24 months

- Recourse: The difference between the original data point and the counterfactual
- Example:
 - A 32 year-old male who wants to get a loan of \$1243 for a duration of 24 months
 - Counterfactual explanation: Had he been 2.5 years older and requested \$210 less for a duration two months shorter, he would have been eligible for the loan.

What if the counterfactual explanations return recourses that are easier to achieve for the *non-protected* group?

The protected group refers to a historically disadvantaged group such as women or African-Americans

What if the counterfactual explanations return recourses that are easier to achieve for the non-protected group?

Unfairness in counterfactuals

How would you solve this problem?

Recourse fairness:

$$\left|\mathbb{E}_{x \sim \mathcal{D}_{pr}^{neg}}\left[d\left(oldsymbol{x},\mathcal{A}(oldsymbol{x})
ight)
ight] - \mathbb{E}_{x \sim \mathcal{D}_{np}^{neg}}\left[d\left(oldsymbol{x},\mathcal{A}(oldsymbol{x})
ight)
ight]
ight| \leq au$$

The costs of recourses for the protected and non-protected group should be close.

Key points of the paper

- Shows that counterfactual algorithms are not *robust*.
- Introduces a training objective for adversarial models.
- The adversarial models manipulate counterfactual explanations.

Key points of the paper

Counterfactual explanation search can converge to different local minima

Key points of the paper

Counterfactual explanation search can converge to different local minima

Key points of the paper

Counterfactual explanation search can converge to different local minima

Key points of the paper

Counterfactual explanation search can converge to different local minima

Key points of the paper

Counterfactual explanation search can converge to different local minima

Recourse for the perturbed input is easier to achieve

How is this a vulnerability?

Counterfactual explanations can be manipulated

Example:

Similar, high-cost recourse

Counterfactual explanations can be manipulated

Example:

Setup

Adversarial model

- Biased towards the non-protected group
- Passes the audits
- Produces very low cost counterfactuals for the non-protected group

Model auditor

• Makes sure the model is recourse fair

- Fairness
- Unfairness
- Small perturbation
- Accuracy
- Perturbed input should be a counterfactual

• Fairness: Model should be fair according to this definition

$$\left|\mathbb{E}_{x \sim \mathcal{D}_{pr}^{neg}}\left[d\left(oldsymbol{x}, \mathcal{A}(oldsymbol{x})
ight)
ight] - \mathbb{E}_{x \sim \mathcal{D}_{np}^{neg}}\left[d\left(oldsymbol{x}, \mathcal{A}(oldsymbol{x})
ight)
ight]
ight| \leq au$$

- Unfairness
- Small perturbation
- Accuracy
- Perturbed input should be a counterfactual

- Fairness: Model should be fair according to this definition
- Unfairness: Perturbed non-protected data leads to a lower cost recourse

$$\mathbb{E}_{x \sim \mathcal{D}_{\mathrm{pr}}^{\mathrm{neg}}} \left[d\left(\boldsymbol{x}, \mathcal{A}(\boldsymbol{x}) \right) \right] \gg \mathbb{E}_{x \sim \mathcal{D}_{\mathrm{np}}^{\mathrm{neg}}} \left[d\left(\boldsymbol{x}, \mathcal{A}(\boldsymbol{x} + \boldsymbol{\delta}) \right) \right]$$

- Small perturbation
- Accuracy
- Perturbed input should be a counterfactual

- Fairness: Model should be fair according to this definition
- Unfairness: Perturbed non-protected data leads to a lower cost recourse
- Small perturbation: Perturbation vectors should be small

minimize
$$\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} d(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{\delta})$$

- Accuracy
- Perturbed input should be a counterfactual

- Fairness: Model should be fair according to this definition
- Unfairness: Perturbed non-protected data leads to a lower cost recourse
- Small perturbation: Perturbation vectors should be small
- Accuracy: Minimize the classification loss
- Perturbed input should be a counterfactual

- Fairness: Model should be fair according to this definition
- Unfairness: Perturbed non-protected data leads to a lower cost recourse
- Small perturbation: Perturbation vectors should be small
- Accuracy: Minimize the classification loss
- Perturbed input should be a counterfactual

minimize
$$\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} (f(\boldsymbol{x} + \boldsymbol{\delta}) - 1)^2$$

1. First stage:

- Small perturbations
- Counterfactuals under perturbations
- Accuracy
- Passes the perturbations and model weights to the second stage

2. Second stage:

- Fairness
- Unfairness
- Accuracy

1. First stage:

$$\boldsymbol{\delta} := \arg\min_{\boldsymbol{\delta}} \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathcal{D}) + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} \left(f(\boldsymbol{x} + \boldsymbol{\delta}) - 1 \right)^2 + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} d(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{\delta})$$

1. First stage:

1. First stage:

counterfactual

1. First stage:

$$\boldsymbol{\delta} := \arg\min_{\boldsymbol{\delta}} \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathcal{D}) + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} \left(f(\boldsymbol{x} + \boldsymbol{\delta}) - 1 \right)^2 + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} d(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{\delta})$$

Perturbation should be small

1. First stage:

$$\boldsymbol{\delta} := \arg\min_{\boldsymbol{\delta}} \min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathcal{D}) + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} (f(\boldsymbol{x} + \boldsymbol{\delta}) - 1)^2 + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} d(\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{\delta})$$

2. Second stage:

$$\begin{split} \boldsymbol{\theta} &:= \arg\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \mathcal{D}) + \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} \left[d\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta})\right) \right] + \left(\mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{pr}^{neg}} \left[d\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x})\right) \right] - \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} \left[d\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x})\right) \right] \right)^2 \\ \text{s.t.} \quad \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{np}^{neg}} \left[d\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x} + \boldsymbol{\delta})\right) \right] < \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}_{pr}^{neg}} \left[d\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x})\right) \right] \end{split}$$

0

Experiments

- Dataset
 - Used two datasets: "German Credit" and "Communities and Crimes"
 - Strong incentives to "game the system" in both datasets

Experiments

- Dataset
 - Used two datasets: "German Credit" and "Communities and Crimes"
 - Strong incentives to "game the system" in both datasets
- Manipulated Model
 - 4 layer feed-forward neural network
 - Tanh activation function
 - Adam optimizer and cross entropy loss

How do you expect the accuracy to be impacted in the manipulated model?

Impact of the manipulated model on accuracy:

	Comm	. & Crime	German Credit		
	Acc	$ oldsymbol{\delta} _1$	Acc	$ \boldsymbol{\delta} _1$	
Unmodified	81.2	-	71.1	-	
Wachter et al. Sparse Wachter Prototypes DiCE	80.9 77.9 79.2 81.1	0.80 0.46 0.46 1.73	72.0 70.5 69.0 71.2	0.09 2.50 2.21 0.09	

- Metrics
 - Effectiveness of manipulation

$$\text{Cost reduction} := \frac{\mathbb{E}_{x \sim \mathcal{D}_{\text{np}}^{\text{neg}}} \left[d(\boldsymbol{x}, \mathcal{A}(\boldsymbol{x})) \right]}{\mathbb{E}_{x \sim \mathcal{D}_{\text{np}}^{\text{neg}}} \left[d(\boldsymbol{x}, \mathcal{A}(\boldsymbol{x} + \boldsymbol{\delta})) \right]}$$

• Metrics

• Effectiveness of manipulation

Table 2: Recourse Costs of Manipulated Models:	Counterfactual algorithms find similar cost
recourses for both subgroups, however, give much low	ver cost recourse if δ is added before the search.

	Communities and Crime				German Credit			
	Wach.	S-Wach.	Proto.	DiCE	Wach.	S-Wach.	Proto.	DiCE
Protected	35.68	54.16	22.35	49.62	5.65	8.35	10.51	6.31
Non-Protected	35.31	52.05	22.65	42.63	5.08	8.59	13.98	6.81
Disparity	<i>0.37</i>	2.12	0.30	6.99	0.75	0.24	<i>0.06</i>	<i>0.5</i>
Non-Protected+ δ	1.76	22.59	8.50	9.57	3.16	4.12	4.69	3.38
Cost reduction	20.1×	2.3×	2.6×	4.5×	1.8×	2.0×	2.2×	2.0×

• Metrics

- Effectiveness of manipulation
- Outlier factor of counterfactuals: How realistic are the counterfactuals returned by the model?

$$P(\mathcal{A}(\boldsymbol{x})) = \frac{d(\mathcal{A}(\boldsymbol{x}), a_0)}{\min_{\boldsymbol{x} \neq a_0 \in \mathcal{D}_{\text{pos}} \cap \{\forall x \in \mathcal{D}_{\text{pos}} | f(x) = 1\}} d(a_0, \boldsymbol{x})}$$

• Metrics

- Effectiveness of manipulation
- Outlier factor of counterfactuals: How realistic are the counterfactuals returned by the model?

$$P(\mathcal{A}(\boldsymbol{x})) = \frac{d(\mathcal{A}(\boldsymbol{x}), a_0)}{\min_{\boldsymbol{x} \neq a_0 \in \mathcal{D}_{\text{pos}} \cap \{\forall x \in \mathcal{D}_{\text{pos}} | f(x) = 1\}} d(a_0, \boldsymbol{x})}$$

The local outlier factor of the counterfactuals with respect to the positively classified data (Breunig et al. <u>"LOF: identifying density-based local outliers"</u>)

Will be >1 if the counterfactual is an outlier.

• Metrics

- Effectiveness of manipulation
- Outlier factor of counterfactuals: How realistic are the counterfactuals returned by the model?

Conclusions

- The paper shows that counterfactual explanations can be manipulated.
- They train an adversarial model that produces seemingly fair recourses but is in fact biased towards the non-protected group.
- They show that the manipulations are effective and realistic.

Appendix

How to train the adversarial model if the counterfactual algorithm is black box?

Lemma 3.1 Assuming the counterfactual explanation $\mathcal{A}_{\theta}(\mathbf{x})$ follows the form of the objective in Equation 1, $\frac{\partial}{\partial \mathbf{x}_{cf}}G(\mathbf{x}, \mathcal{A}_{\theta}(\mathbf{x})) = 0$, and m is the number of parameters in the model, we can write the derivative of counterfactual explanation \mathcal{A} with respect to model parameters θ as the Jacobian,

$$\frac{\partial}{\partial \boldsymbol{\theta}} \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x}) = -\left[\frac{\partial^2 G\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x})\right)}{d\boldsymbol{x}_{cf}^2}\right]^{-1} \cdot \left[\frac{\partial}{\partial \boldsymbol{\theta}_1} \frac{\partial}{\partial \boldsymbol{x}_{cf}} G\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x})\right) \cdots \frac{\partial}{\partial \boldsymbol{\theta}_m} \frac{\partial}{\partial \boldsymbol{x}_{cf}} G\left(\boldsymbol{x}, \mathcal{A}_{\boldsymbol{\theta}}(\boldsymbol{x})\right)\right]$$