
Fairness in Database Research
Ranking & Selection

Fangzhu Shen, Yuxi Liu
03/23/2022

1

Designing Fair Ranking
Schemes

Abolfazl Asudeh, H. V. Jagadish, Julia Stoyanovich, Gautam Das,
SIGMOD 2019

2

Ranking Problem
• Example: college admission, creditworthiness of individuals, tennis players

ranking

• A prominent family of ranking schemes are score-based rankers: compute the
score as a linear combination of attribute values, with weights

3

Scoring Function

Ranking Example: College Admission

4

Goal: design a ranking scheme to evaluate a pool of applicants

Two scoring attributes: high school GPA (g) & SAT (s)

Fairness criterion: the admitted class should comprise at least 40% women

Ranking Example: College Admission

5

Goal: design a ranking scheme to evaluate a pool of applicants

Two scoring attributes: high school GPA (g) & SAT (s)

Fairness criterion: the admitted class should comprise at least 40% women

Priori:

Result: only 150 women among the top-500
(= 30% < 40%)

Possible Reason: women’s average SAT is lower than
men’s

Ranking Example: College Admission

6

Goal: design a ranking scheme to evaluate a pool of applicants

Two scoring attributes: high school GPA (g) & SAT (s)

Fairness criterion: the admitted class should comprise at least 40% women

Priori:

Result: only 150 women among the top-500
(= 30% < 40%)

Possible Reason: women’s average SAT is lower than
men’s

Find an alternative scoring function both “fair”
(given fairness criterion) & “high quality” (close
to f):

Goal

Fair Ranking Problem
Desire a ranking scheme:

mitigate preexisting bias in sensitive
attributes, e.g., disability, gender, race

Problem: how to make the output satisfy the
fairness criterion?

7

Manipulate the
output?

Fair Ranking Problem
How to make the output satisfy some given fairness criterion?

8

Manipulate the
output? (X)Disparate Treatment:

Explicit use of sensitive
attributes to make decisions

Problem
Goal: build a system that assists in
designing fair score-based ranking schemes

Given the input data and fairness criterion,
the system helps the designer:

1. check whether f satisfies the fairness
criterion

2. identify an alternative function f’ that
satisfies the fairness criterion and similar
to f

9

Data model

10

Ranking model

Linear Scoring function:

Assumptions without loss of generality:

(1) non-negative weight

(2) higher score, higher rank

11

12

Fairness model

The system can adopt a general fairness model

We focus on proportionality constraints:

that bound the number of items belonging to a particular categorical attribute at
the top-k

Example: sensitive attribute – gender

“the admitted class should comprise at least 40% women”

Intuitive Geometric Interpretation

Items are represented by points in

A linear scoring function f is represented by a ray starting
from the origin and passing through the point

Every ray can be identified by angles.

The score-based ordering of the points induced by f
corresponds to the ordering of their projections onto the
ray.

13

Example with d=2:

Problem Definition

14

Structure of the System

Offline phase:
Preprocess the data and identify the set
of functions that satisfy the fairness
criterion

Online phase:

Answer user queries→Response fast!

Check whether f is satisfactory

Find an alternative f’

15

2-Dimensional Case

16

Important Notion: Ordering Exchange
The ordering of the items is the ordering of their projections on the ray of function f

• Right of green function: t2>t1
• Left of green function: t1>t2
• Partition the set of scoring functions

17

Important Notion: Ordering Exchange

Idea: we do not need to consider every possible ranking function (every angle), we
only need to consider at most as many as there are orderings of the items

18

How to Identify Ordering Exchange: Dual Space
Transform items in dual space using the equation:

2D:

19

How to Identify Ordering Exchange:Dual Space
Every item t is transformed into the line d(t)

The ordering of items based on a function is identified by the intersections of the
dual lines with the ray

→ intersection of two dual line can identify an ordering exchange

20

Offline Processing

• Identify all “satisfactory regions” by sweeping from x-axis to y-axis

21

*Green region means all function within that
angle satisfies the fairness criterion

Online Processing

• Note: every ray can be identified as an angle

• Check whether f is in satisfactory regions

• Apply binary search on the sorted list of satisfactory regions

• Fast!

22

Multi-Dimensional Case

23

Multi-Dimensional Case

• 2D Extension:
• geometry of ordering exchange

• Offline processing:

• arrangement tree construction

• Online processing:

• approximation

• *Sampling approaches to improve the performance

24

MD: Ordering exchange from hyperplanes
D-dimension:

Angle coordinate system: every function (ray in) can be represented by the
point (d-1 angles), each is in [0, π/2]

Consider dual space: item t is transformed into (d-1)-dimensional hyperplane

Intersection of two hyperplanes: (d-2) structure

25

Ordering exchanges from hyperplane

3-dimensional case:

26

How to identify satisfactory regions in MD?
*Satisfactory Region: functions in the region satisfy the given fairness constraint

Satisfactory regions in MD

Check the intersection of every two item hyperplanes?

Ordering exchange hyperplane h(i,j): items i and j
switch order on the two sides

Every hyperplane h(i,j) divides the space into two half
spaces: h+,h-

Inside each convex region, the order does not change

27

Satisfactory regions in MD
An incremental algorithm to identify all satisfactory
convex regions fast: Arrangement tree

- add the hyperplanes one after the other, at each
iterations, it will consider the set of regions which
the new hyperplane intersects

28

Online Processing

How to find the closest satisfactory function f’ to f?

Baseline: solve the problem for each satisfactory region, and return the
function with minimum angle distance

29

Online Processing

How to find the closest satisfactory function f’ to f?

Baseline: solve the problem for each satisfactory region, and return the function
with minimum angle distance

Efficient algorithm to obtain approximate answer quickly: partition into cells

30

MD Online Processing: Approximation
Idea: assign a fair function to each cell

• Partition the function space into equi-volume

cells

• Identify the set of all cells that intersect with

at least one satisfactory region

• For each cell, identify HC: the set of

hyperplanes passing through the cell

31

MD Online Processing: Approximation
Idea: assign a fair function to each cell

• For each cell, we try to find a satisfactory

function inside it:

• use the arrangement tree structure and

apply a stop early strategy

• Consider other cells: assign the closest

discovered satisfactory function

32

Experimental Evaluation

33

Experimental Setup

Dataset: COMPAS
A dataset about racial bias in criminal risk assessment

Fairness models

FM1: proportional representation on a single type attribute (default)
• “at most 60% of the top-ranked 30% are African American.”

FM2: proportional representation on multiple type attributes
• “specify the maximum proportion of members of each particular demographic group

(sex, race, age) among the top-ranked 30%”

34

Validation

COMPAS with d = 3

Fairness model: FM1

Out of 100 random queries, 52 were
satisfactory.

For the remaining 48 functions, the model can
find a satisfactory function f′ close to the input
function f

Show the effectiveness Angle between input/output function

35

Performance of Query Answering

The goal of the system: fast for online phase – answering user queries

2D

• Do binary search
• Query time O(logn): 30 usec
• Time for ordering results based on the input function O(nlogn): 25 msec

MD

• Find the cell that f belongs in O(logN), N is the number of cells
• Query time: 200 usec
• Time for ordering: 25 msec

36

Performance for Preprocessing

2D

• Evaluate the efficiency of sweep algorithm

• The number of ordering exchanges is much
smaller than the theoretical O(n^2)
upper-bound

• Even for the large setting, the
preprocessing is within the reasonable
time

37

Performance for preprocessing

MD

Proposed the arrangement tree data
structure, in order to skip comparing
a new hyperplane with all current
regions

Advantage of arrangement Tree

38

Conclusion

• Use the geometry knowledge, to design a system that given an input
function f, checks whether it satisfies fairness criterion which user
defines. If it does not satisfy, the system will identify an alternative
function f’

• Focus on the linear scoring function

• For a general fairness model

39

Fairness-Aware Range Queries
for Selecting Unbiased Data

Suraj Shetiya et al., ICDE 2022

40

Background

● In the era of big data and advanced computation models, we are all
constantly being judged by the analysis, algorithmic outcomes, and AI models
generated using data about us.

● “An algorithm is only as good as the data it works with”

● The use of data in those applications have been highly criticised for being
discriminatory, racist, sexist and unfair -> probably because real-life social
data is almost always biased..

41

Prelim & Notions color(sensitive attribute): race, gender…

42

Range Query

t4, t6, t10, t12

We call Query 1 as single-predicate range query.
Multi-predicate range queries can be something like 4 <= A0 <= 7 AND A1 >= 6

43

A running example
SELECT *

FROM EMP

WHERE salary ≥ $65K

A company (around 150k employees) would like to make a policy decision

Target at its “profitable” employees, using salary as an indicator of how profitable an employee is

Company (150k employees): female > male

“Profitable” employees (18% of total): male > felmale

Company will favor the preferences of the
male employee, which is unfair to female
employees and will, in a feedback loop,
result in losing more “profitable” female
candidates

44

Motivation

● Selection bias can amplify unfairness issues!

45

What can the company do to get a fair outcome?

 (achieve fairnesson on the number of male employees and female employees)

SELECT *

FROM EMP

WHERE salary ≥ $65K

46

What can the company do to get a fair outcome?

- post-query processing:
- remove male employees
- add female employees

SELECT * FROM EMP WHERE salary ≥ $65K

Technically easy, but illegal in many jurisdictions…

47

Instead of practicing disparate treatment, we adjust the SQL(range) query!

SELECT * FROM EMP WHERE salary ≥ $65K

SELECT * FROM EMP WHERE $60.5K <= salary <= $152K

Its outcome is 75% similar to the initial range query!

The number of male employees returned is at most 1000 (around 5%) more than females

48

Fairnes constraint (binary sensitive attribute only)

1. red = blue
2. |red - blue| <= k
3. (red / all red) = (blue / all blue)
4. …

To cover all the cases

Cr, Cb: number of red objects, blue objects in the output

Wr, Wb: weight of red, weight of blue
Wr = Wb: unweighted fairness
Wr != Wb: weighted fairness49

Jaccard similarity:

example
50

Jaccard similarity: Example

t4, t6, t10, t12

t0, t4, t6, t10

Jaccard_similarity(Q1, Q2) = |{t4, t6, t10}| / |{t0, t4, t6, t10, t12}| = 0.6 51

Problem Definition

52

Overview

1. Single-predicate Range Queries
a. Jump pointers
b. SPQA for unweighted fairness
c. Generalization of weighted fairness

2. Multi-predicate Range Queries
a. Best-first search (BFS)
b. IBFSMP (inspired by A*)

3. Experiments

53

Single-predicate Range Queries

Any brute force ideas? (fairness: red = blue)

54

Single-predicate Range Queries

Any brute force ideas?

O(n^2) to check all the possible single-predicate ranges (fairness and
similarity)

Or we can change the two end points of the input range..

55

Jump Pointers:

56

Jump Pointers:

Red left: go left, the first position that we get one more red
Red right: go right, the first position that we get one more red
Blue left: go left, the first position that we get one more blue
Blue right: go right, the first position that we get one more blue

t1 → t12: blue right JP, we get {t5, t9, t0, t4, t10, t6, t12}, so we will get one more blue
t1 ← t0: red left JP, we get {t9, t5, t1}, so we will get one more red

57

Jump Pointers:

Why?

like an index that can direct us to get closer to the fairness

(fairness: red = blue)

If the disparity (#red - #blue) = -2 < 0, we are targeting at get one more red or
remove one more blue, and repeat repeat until we get the fairness range

58

Jump Pointers:

Why?

like an index that can direct us to get closer to the fairness

(fairness: red = blue)

If the disparity (#red - #blue) = -2 < 0, we are targeting at get one more red or
remove one more blue, and repeat repeat until we get the fairness range

How to get 4 jump
pointers for each object?
– Binary Search Tree
(BST) in O(nlogn)

59

Algorithm: SPQA

60

Algorithm: SPQA
(fairness: red = blue)

Expand the left end point by red left pointer get one more red

Expand the right end point by red right pointer get one more red

You may ask:
Whether we can use the jump pointers to shrink the end points instead of
expanding? Sure! Although it is a little bit more complicated…

Time complexity: O(log(n) + disparity(input)) -> sublinear

61

Weighted Single-predicated Range Queries?

Combining the weights into the generation of jump pointers

● it can also solve co-located objects

62

Experiments: proof of concept

Input query: salary > $65000
SPQA: $60562 <= salary <= $152000 (76.23%
Jaccard similarity), at most 1000 (around 5%) males
more than females

63

Experiments: Systems Integration

SPQA vs. O(n^2) naive algorithm

Average time taken:

0.0054 seconds vs. 6.938 seconds

1200x faster

64

Experiments: IBFS (for multi-predicate)

vs. single predicate: 3 orders of magnitude slower than the jump
pointer algorithm (SPQA)

vs. baseline: 3.6 seconds against 697.4 seconds

65

Multi-predicate Range Queries

complicates the problem significantly

● the idea of jump pointer does not carry over
○ there are many different directions which a single jump can occur

Observation: user might be not interested in fair ranges that are too far away
from the input query. (should be highly similar)

66

Multi-predicate Range Queries

complicates the problem significantly

● the idea of jump pointer does not carry over
○ there are many different directions which a single jump can occur

Observation: user might be not interested in fair ranges that are too far away
from the input query. (should be highly similar)

Searching!

67

Neighbor:

68

BFSMP: Best-first Search algorithm for Multi-predicate

1. Starting from the input query
2. Calculate all the “neighbors”
3. Use a max-heap (priority queue) with

the key as similarity to maintain all the
ranges

4. Check the one with highest similarity, if
it satisfies the fairness constraint, done.

69

How to calculate neighbors?

Expanding sides: O(log^d_n + k) using a range tree

Expanding corners: O((k + 1)log^d_n) using Range-Skyline-Query Algorithm,
where k is the size of skyline

70

Optimization of Searching: heuristic

(Inspired by A*)
IBFSMP: Informed best first search
Use a heuristic to prune the searching tree

U-threshold: the upper-bound threshold on the
maximum similarity for a fair range that one can hope
to achieve by branching out from the current node

Instead of selecting the most similar node(range query) to be explored next, IBFSMP
selects the node with maximum U-threshold to be explored next

71

Take-away Points & Possible Future directions

1. Integrate fairness into DBMS
2. Design selection query (rubric) instead of post-processing/disparate treatment
3. Jump pointers & Neighbors: building an index helps
4. Transform (sub-)problems/concepts into computational geometry
5. Binary fairness constraint -> arbitrary fairness constraint
6. Range queries -> other SQL queries

72

