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Ranking Problem
• Example: college admission, creditworthiness of individuals, tennis players 

ranking

• A prominent family of ranking schemes are score-based rankers: compute the 
score as a linear combination of attribute values, with weights
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Scoring Function



Ranking Example: College Admission
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Goal: design a ranking scheme to evaluate a pool of applicants

Two scoring attributes: high school GPA (g) & SAT (s)

Fairness criterion: the admitted class should comprise at least 40% women
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Goal: design a ranking scheme to evaluate a pool of applicants

Two scoring attributes: high school GPA (g) & SAT (s)

Fairness criterion: the admitted class should comprise at least 40% women

Priori:

Result: only 150 women among the top-500 
(= 30% < 40%)

Possible Reason: women’s average SAT is lower than 
men’s



Ranking Example: College Admission
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Goal: design a ranking scheme to evaluate a pool of applicants

Two scoring attributes: high school GPA (g) & SAT (s)

Fairness criterion: the admitted class should comprise at least 40% women

Priori:

Result: only 150 women among the top-500 
(= 30% < 40%)

Possible Reason: women’s average SAT is lower than 
men’s

Find an alternative scoring function both “fair” 
(given fairness criterion) & “high quality” (close 
to f):

Goal



Fair Ranking Problem
Desire a ranking scheme:

mitigate preexisting bias in sensitive 
attributes, e.g., disability, gender, race

Problem: how to make the output satisfy the 
fairness criterion?
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Manipulate the 
output?



Fair Ranking Problem
How to make the output satisfy some given fairness criterion?
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Manipulate the 
output? (X)Disparate Treatment:

Explicit use of sensitive 
attributes to make decisions



Problem
Goal: build a system that assists in 
designing fair score-based ranking schemes

Given the input data and fairness criterion, 
the system helps the designer:

1. check whether f satisfies the fairness 
criterion

2. identify an alternative function f’ that 
satisfies the fairness criterion and similar 
to f
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Data model

 

10



Ranking model

Linear Scoring function:

Assumptions without loss of generality: 

(1) non-negative weight 

(2) higher score, higher rank
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Fairness model

The system can adopt a general fairness model

We focus on proportionality constraints:

that bound the number of items belonging to a particular categorical attribute at 
the top-k

Example: sensitive attribute – gender

“the admitted class should comprise at least 40% women”



Intuitive Geometric Interpretation

Items are represented by points in
 

A linear scoring function f is represented by a ray starting 
from the origin and passing through the point

Every ray can be identified by angles.

The score-based ordering of the points induced by f 
corresponds to the ordering of their projections onto the 
ray.
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Example with d=2:



Problem Definition
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Structure of the System

Offline phase: 
Preprocess the data and identify the set 
of functions that satisfy the fairness 
criterion

Online phase: 

Answer user queries→Response fast!

Check whether f is satisfactory

Find an alternative f’
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2-Dimensional Case
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Important Notion: Ordering Exchange
The ordering of the items is the ordering of their projections on the ray of function f

• Right of green function: t2>t1
• Left of green function: t1>t2
• Partition the set of scoring functions

17



Important Notion: Ordering Exchange

Idea: we do not need to consider every possible ranking function (every angle), we 
only need to consider at most as many as there are orderings of the items
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How to Identify Ordering Exchange: Dual Space
Transform items in dual space using the equation:

2D: 
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How to Identify Ordering Exchange:Dual Space
Every item t is transformed into the line d(t)

The ordering of items based on a function is identified by the intersections of the 
dual lines with the ray

→ intersection of two dual line can identify an ordering exchange
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Offline Processing

• Identify all “satisfactory regions” by sweeping from x-axis to y-axis

21

*Green region means all function within that 
angle satisfies the fairness criterion



Online Processing

• Note: every ray can be identified as an angle

• Check whether f is in satisfactory regions

• Apply binary search on the sorted list of satisfactory regions

• Fast! 
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Multi-Dimensional Case
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Multi-Dimensional Case

• 2D Extension:
•  geometry of ordering exchange

• Offline processing: 

• arrangement tree construction

• Online processing: 

• approximation

• *Sampling approaches to improve the performance
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MD: Ordering exchange from hyperplanes
D-dimension: 

Angle coordinate system: every function (ray in        ) can be represented by the 
point               (d-1 angles), each is in [0, π/2]

Consider dual space: item t is transformed into (d-1)-dimensional hyperplane 

Intersection of two hyperplanes: (d-2) structure
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Ordering exchanges from hyperplane

3-dimensional case:
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How to identify satisfactory regions in MD?
*Satisfactory Region: functions in the region satisfy the given fairness constraint



Satisfactory regions in MD

Check the intersection of every two item hyperplanes?

Ordering exchange hyperplane h(i,j): items i and j 
switch order on the two sides

Every hyperplane h(i,j) divides the space into two half 
spaces: h+,h-

Inside each convex region, the order does not change
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Satisfactory regions in MD
An incremental algorithm to identify all satisfactory 
convex regions fast: Arrangement tree

- add the hyperplanes one after the other, at each 
iterations, it will consider the set of regions which 
the new hyperplane intersects
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Online Processing

How to find the closest satisfactory function f’ to f?

Baseline: solve the problem for each satisfactory region, and return the 
function with minimum angle distance
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Online Processing

How to find the closest satisfactory function f’ to f?

Baseline: solve the problem for each satisfactory region, and return the function 
with minimum angle distance

Efficient algorithm to obtain approximate answer quickly: partition into cells
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MD Online Processing: Approximation
Idea: assign a fair function to each cell

• Partition the function space into equi-volume 

cells

• Identify the set of all cells that intersect with 

at least one satisfactory region

• For each cell, identify HC: the set of 

hyperplanes passing through the cell
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MD Online Processing: Approximation
Idea: assign a fair function to each cell

• For each cell, we try to find a satisfactory 

function inside it:

• use the arrangement tree structure and 

apply a stop early strategy

• Consider other cells: assign the closest 

discovered satisfactory function
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Experimental Evaluation
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Experimental Setup

Dataset: COMPAS
A dataset about racial bias in criminal risk assessment

Fairness models

FM1: proportional representation on a single type attribute (default)
• “at most 60% of the top-ranked 30% are African American.”

FM2: proportional representation on multiple type attributes
• “specify the maximum proportion of members of each particular demographic group 

(sex, race, age) among the top-ranked 30%”
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Validation

COMPAS with d = 3

Fairness model: FM1

Out of 100 random queries, 52 were 
satisfactory. 

For the remaining 48 functions, the model can 
find a satisfactory function f′ close to the input 
function f

Show the effectiveness Angle between input/output function
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Performance of Query Answering

The goal of the system: fast for online phase – answering user queries

2D

• Do binary search
• Query time O(logn): 30 usec
• Time for ordering results based on the input function O(nlogn): 25 msec

MD

• Find the cell that f belongs in O(logN), N is the number of cells
• Query time: 200 usec
• Time for ordering: 25 msec
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Performance for Preprocessing

2D

• Evaluate the efficiency of sweep algorithm

• The number of ordering exchanges is much 
smaller than the theoretical O(n^2) 
upper-bound

• Even for the large setting, the 
preprocessing is within the reasonable 
time

37



Performance for preprocessing

MD

Proposed the arrangement tree data 
structure, in order to skip comparing 
a new hyperplane with all current 
regions

Advantage of arrangement Tree
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Conclusion

• Use the geometry knowledge, to design a system that given an input 
function f, checks whether it satisfies fairness criterion which user 
defines. If it does not satisfy, the system will identify an alternative 
function f’

• Focus on the linear scoring function

• For a general fairness model
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Fairness-Aware Range Queries 
for Selecting Unbiased Data

Suraj Shetiya et al., ICDE 2022
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Background

● In the era of big data and advanced computation models, we are all 
constantly being judged by the analysis, algorithmic outcomes, and AI models 
generated using data about us.

● “An algorithm is only as good as the data it works with”

● The use of data in those applications have been highly criticised for being 
discriminatory, racist, sexist and unfair -> probably because real-life social 
data is almost always biased..
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Prelim & Notions color(sensitive attribute): race, gender… 
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Range Query

t4, t6, t10, t12

We call Query 1 as single-predicate range query. 
Multi-predicate range queries can be something like 4 <= A0 <= 7 AND A1 >= 6
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A running example
SELECT * 

FROM EMP 

WHERE salary ≥ $65K

A company (around 150k employees) would like to make a policy decision

Target at its “profitable” employees, using salary as an indicator of how profitable an employee is

Company (150k employees): female > male

“Profitable” employees (18% of total): male > felmale

Company will favor the preferences of the 
male employee, which is unfair to female 
employees and will, in a feedback loop, 
result in losing more “profitable” female 
candidates
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Motivation

● Selection bias can amplify unfairness issues!
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What can the company do to get a fair outcome?

 (achieve fairnesson on the number of male employees and female employees)

SELECT * 

FROM EMP 

WHERE salary ≥ $65K
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What can the company do to get a fair outcome?

- post-query processing:
- remove male employees
- add female employees

SELECT * FROM EMP WHERE salary ≥ $65K

Technically easy, but illegal in many jurisdictions…
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Instead of practicing disparate treatment, we adjust the SQL(range) query!

SELECT * FROM EMP WHERE salary ≥ $65K

SELECT * FROM EMP WHERE $60.5K <= salary <= $152K

Its outcome is 75% similar to the initial range query!

The number of male employees returned is at most 1000 (around 5%) more than females
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Fairnes constraint (binary sensitive attribute only)

1. red = blue
2. |red - blue| <= k
3. (red / all red) = (blue / all blue)
4. …

To cover all the cases

Cr, Cb: number of red objects, blue objects in the output

Wr, Wb: weight of red, weight of blue
Wr = Wb: unweighted fairness
Wr != Wb: weighted fairness49



Jaccard similarity:

example
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Jaccard similarity: Example

t4, t6, t10, t12

t0, t4, t6, t10

Jaccard_similarity(Q1, Q2) = |{t4, t6, t10}| / |{t0, t4, t6, t10, t12}| = 0.6 51



Problem Definition
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Overview

1. Single-predicate Range Queries
a. Jump pointers
b. SPQA for unweighted fairness
c. Generalization of weighted fairness

2. Multi-predicate Range Queries
a. Best-first search (BFS)
b. IBFSMP (inspired by A*)

3. Experiments
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Single-predicate Range Queries

Any brute force ideas? (fairness: red = blue)
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Single-predicate Range Queries

Any brute force ideas?

O(n^2) to check all the possible single-predicate ranges (fairness and 
similarity) 

Or we can change the two end points of the input range..
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Jump Pointers:
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Jump Pointers:

Red left: go left, the first position that we get one more red 
Red right: go right, the first position that we get one more red
Blue left: go left, the first position that we get one more blue
Blue right: go right, the first position that we get one more blue

t1 → t12: blue right JP, we get {t5, t9, t0, t4, t10, t6, t12}, so we will get one more blue 
t1 ← t0: red left JP, we get {t9, t5, t1}, so we will get one more red
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Jump Pointers:

Why?

like an index that can direct us to get closer to the fairness

(fairness: red = blue)

If the disparity (#red - #blue) = -2 < 0, we are targeting at get one more red or 
remove one more blue, and repeat repeat until we get the fairness range
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Jump Pointers:

Why?

like an index that can direct us to get closer to the fairness

(fairness: red = blue)

If the disparity (#red - #blue) = -2 < 0, we are targeting at get one more red or 
remove one more blue, and repeat repeat until we get the fairness range

How to get 4 jump 
pointers for each object?
– Binary Search Tree 
(BST) in O(nlogn)
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Algorithm: SPQA
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Algorithm: SPQA
(fairness: red = blue)

Expand the left end point by red left pointer get one more red

Expand the right end point by red right pointer get one more red

You may ask:
Whether we can use the jump pointers to shrink the end points instead of 
expanding? Sure! Although it is a little bit more complicated…

Time complexity: O(log(n) + disparity(input)) -> sublinear
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Weighted Single-predicated Range Queries?

Combining the weights into the generation of jump pointers

● it can also solve co-located objects
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Experiments: proof of concept

Input query: salary > $65000
SPQA: $60562 <= salary <= $152000 (76.23% 
Jaccard similarity), at most 1000 (around 5%) males 
more than females
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Experiments: Systems Integration

SPQA vs. O(n^2) naive algorithm

Average time taken:

0.0054 seconds vs. 6.938 seconds

1200x faster
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Experiments: IBFS (for multi-predicate) 

vs. single predicate: 3 orders of magnitude slower than the jump 
pointer algorithm (SPQA)

vs. baseline: 3.6 seconds  against 697.4 seconds
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Multi-predicate Range Queries

complicates the problem significantly

● the idea of jump pointer does not carry over
○ there are many different directions which a single jump can occur

Observation: user might be not interested in fair ranges that are too far away 
from the input query. (should be highly similar)
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Multi-predicate Range Queries

complicates the problem significantly

● the idea of jump pointer does not carry over
○ there are many different directions which a single jump can occur

Observation: user might be not interested in fair ranges that are too far away 
from the input query. (should be highly similar)

Searching!
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Neighbor:
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BFSMP: Best-first Search algorithm for Multi-predicate

1. Starting from the input query
2. Calculate all the “neighbors”
3. Use a max-heap (priority queue) with 

the key as similarity to maintain all the 
ranges

4. Check the one with highest similarity, if 
it satisfies the fairness constraint, done.
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How to calculate neighbors?

Expanding sides: O(log^d_n + k) using a range tree

Expanding corners: O((k + 1)log^d_n) using Range-Skyline-Query Algorithm, 
where k is the size of skyline
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Optimization of Searching: heuristic

(Inspired by A*)
IBFSMP: Informed best first search
Use a heuristic to prune the searching tree

U-threshold: the upper-bound threshold on the 
maximum similarity for a fair range that one can hope 
to achieve by branching out from the current node

Instead of selecting the most similar node(range query) to be explored next, IBFSMP 
selects the node with maximum U-threshold to be explored next

71



Take-away Points & Possible Future directions

1. Integrate fairness into DBMS
2. Design selection query (rubric) instead of post-processing/disparate treatment
3. Jump pointers & Neighbors: building an index helps
4. Transform (sub-)problems/concepts into computational geometry
5. Binary fairness constraint -> arbitrary fairness constraint
6. Range queries -> other SQL queries
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