
L2: Intro to Java

1/17/24 CompSci 201, Spring 2024, Java 1

Alex Steiger

CompSci 201: Spring 2024

1/17/24

Logistics, Coming up
• This Friday, 1/19

• First discussion section meetings

• Next Monday, 1/22
• Intro to OOP (object-oriented programming) in Java

• Next Wednesday 1/24
• Interfaces, Implementations, ArrayList data structure

• First APT set (short programming exercises) due

• Can discuss with peers, but code must be your
own. Policies page

1/17/24 CompSci 201, Spring 2024, Java 2

https://sites.duke.edu/compsci_201_001_sp24/policies/

Helper Hours
• What: Drop-in time to ask TAs questions about

course content (Concepts, Java, APTs,
Projects).

• When: Sunday-Thursdays

• Where: In-person and virtual options

• How:
• Try / think on your own
• OhHai queue to post your question
• Talk with a TA for ~5-15 minutes
• Iterate

• Details: See the Getting Help page of the
website.

1/17/24 CompSci 201, Spring 2024, Java 3

https://sites.duke.edu/compsci_201_001_sp24/getting-help/

1/17/24 CompSci 201, Spring 2024, Java 4

1/17/24 CompSci 201, Spring 2024, Java 5

1/17/24 CompSci 201, Spring 2024, Java 6

1/17/24 CompSci 201, Spring 2024, Java 7

1/17/24 CompSci 201, Spring 2024, Java 8

Goals for 201?
• Become proficient in Java / coding

• Improve problem-solving skills

• Learn real-world applications to other fields

• Learn to better communicate and collaborate

• Decide if want to pursue/major in CS

• Build a foundation for more CS classes

1/17/24 CompSci 201, Spring 2024, Java 9

Fred Brooks,
why is programming fun?

1/17/24 CompSci 201, Spring 2024, Java 10

• Duke ‘53
• Founded CompSci @ UNC ‘64
• Turing award ’99

1. Sheer joy of making things.
2. Pleasure of making things that are useful.
3. Fascination of fashioning complex puzzle-like

objects of interlocking moving parts.
4. Joy of always learning.
5. Delight in working in such a tractable medium.

Fred Brooks, cont.

1/17/24 CompSci 201, Spring 2024, Java 11

• …Few media of creation are so flexible, so
easy to polish and rework, so readily capable
of realizing grand conceptual structures…

• …[Programming] is fun because it gratifies
creative longings built deep within us and
delights sensibilities [we all have in common.]

An Algorithmic Problem-Solving
Process: UPIC

1/17/24 CompSci 201, Spring 2024, Java 12

Correctness
Test and debug to verify and fix the code.

Implement
Translate the algorithm into code.

Plan
Generalize insights, develop an algorithm.

Understand
Understand the problem you're trying to solve. Read carefully, do examples.

Only doing a lot of
actual programming

in this step!

A very brief history of Java

1/17/24 CompSci 201, Spring 2024, Java 13

C C++ Java

1972 1985 1995

• C. Streamlined language developed for writing
operating systems and low-level systems
utilities.

• C++. Can do everything in C (manual memory
management), adds support for object-oriented
programming (OOP).

• Java. Requires OOP, Automatic memory
management, stronger compile time
guarantees, more device independent.

Java is a compiled language

Compiled

• All at once

• Compiler is another
program that translates
source code into
machine code.

• Run the executable, the
output of the compiler.

Interpreted

• Line at a time

• Interpreter is another
program that translates
and runs a program line
by line.

• Python is an interpreted
language.

1/17/24 CompSci 201, Spring 2024, Java 14

How is the program you write in source code
translated into something instructions the
machine can execute?

The “Java Virtual Machine”

1/17/24 CompSci 201, Spring 2024, Java 15

Compiling Hello.java

Creates
Hello.class

Contains
”bytecode” Not
machine code

Can run it in JVM

Interlude: Compile and Run Java

1/17/24 CompSci 201, Spring 2024, Java 16

Command Meaning Details

javac Compile .java files
to .class files

• javac file.java compiles and creates
file.class

• javac *.java compiles all .java files in
current directory to .class files.

java Run java class
files

java file executes the main method of
file.class. Must have already been compiled
from file.java.

See the javac documentation for more options

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html

Pressing the “run” button in VS
Code does these steps for you

1/17/24 CompSci 201, Spring 2024, Java 17

All this extra info is
about the compile -

> run process

Run buttons

There is the
output

Basic anatomy of a Java program

• Each Java source code file
<className>.java
contains at least public
className.

1/17/24 CompSci 201, Spring 2024, Java 18

• To run a program, must have a public
static void main (PSVM) method

• Larger projects have multiple classes / .java
files; only one needs a PSVM to start program.

Java uses {} to denote blocks and
; to end statements

1/17/24 CompSci 201, Spring 2024, Java 19

; ends a statement /
denotes an operation

{…} denotes a block of code, e.g.,
for an if statement, loop, or

method

And indentation denotes blocks.
Still a style convention in Java!

newline ends statement in Python

even

even
will this print?

Java is strongly typed
Must be explicit about the type of every variable.

1/17/24 CompSci 201, Spring 2024, Java 20

Prints 2

Prints 2.5

Prints 2.5

Notice also that every method must
specify the type of what it returns (void

means nothing).

Can cast to
convert types

(NewType) var

Prints 2

Strong typing allows the compiler
to help you avoid mistakes

1/17/24 CompSci 201, Spring 2024, Java 21

Java primitive types
• Primitive types in Java: Don’t need new to

create.
• byte, short (rarely used in this course)

• int, long (common integer types)

• float, double (common decimal number types)

• boolean (true or false)

• char (for example, ‘a’ or ‘x’)

1/17/24 CompSci 201, Spring 2024, Java 22

Java basic operators

+, - Add, subtract

*, / Multiply, divide (careful with divide, 5/4 gives 1)

% Modulus (remainder in int division, if % 2 == 0 then even,
if % 2 == 1 then odd)

<, <= Less than, less than or equal to

>, >= Greater than, greater than or equal to

== Equal (only for primitive types!!!)

! Logical NOT (!a means a must not be true)

&& Logical AND (a && b means a and b need to be true)

|| Logical OR (a || b means at a, b, or both need to be true)

1/17/24 CompSci 201, Spring 2024, Java 23

Java reference types

• Variable stores a reference to an object, i.e., a
place in memory.

• Can access instance variables and method calls
with the dot operator.

1/17/24 CompSci 201, Spring 2024, Java 24

Type

Variable
name

new keyword
to allocate
memory

Constructor method
to initialize. Always
has same name as

type.

Java arrays

An array holds a fixed number of values of a
single type.

1/17/24 CompSci 201, Spring 2024, Java 25

201 22

numbers

Error: Index 5 out of
bounds for length 5 at
Array.main(Array.java:6)

Type of elements
Length of array,
numbers.length

Is an object, new
allocates memory

Shorthand for pre-initialized Array: int[] myArray = {1, 2, 3};

Special Case: String
• NOT primitive, but can initialize in two ways:

• String s = “Hello”;
• String s = new String(“Hello”);

• + is overloaded to concatenate Strings:
• String s = “Hello”;
• String t = “ World”;
• System.out.println(s + t);prints “Hello World”

• NOT an array, but can access i-th char:
• char c = t.charAt(1);
• System.out.println(c); prints “W”

1/17/24 CompSci 201, Spring 2024, Java 26

Java Strings: concepts and
methods

1/17/24 CompSci 201, Spring 2024, Java 27

Strings are objects that hold an array of characters.

H i C S 2 0 1 !

0 1 2 3 4 5 6 7 8 9

10

‘H’

“Hi C”

True
Can even convert to char[] and back

More String methods: split and
join

Can split a String into an array of Strings or
join an array of Strings to one String.

1/17/24 CompSci 201, Spring 2024, Java 28

delimiter

See the full String documentation here

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

Java conditionals

1/17/24 CompSci 201, Spring 2024, Java 29

Condition must be
in parentheses

{} to enclose
block

Else statements
optional, can chain
else if else if … else.

Java loops

Regular for

Enhanced for, “for-each” loop

1/17/24 CompSci 201, Spring 2024, Java 30

Creates an int variable,
starting at 0, accessible

only inside the loop block.
Loop while

i < numbers.length

Increase i by 1
each time through

loop

number takes each
value in numbers

in sequence
while

Note on Java characters

Java characters are ordered, comparable,
correspond to integer values.

Values are how characters are encoded on
a machine (ASCII)

1/17/24 CompSci 201, Spring 2024, Java 31

WOTO

1/17/24 CompSci 201, Spring 2024, Java 32

Not graded for correctness,
just participation.

Try to answer without
looking back at slides and
notes.

But do talk to your
neighbors!

Anatomy of Java methods
A function defined in a class. No “regular”
functions in Java, all methods.

1/17/24 CompSci 201, Spring 2024, Java 34

Everything is inside a class,
can have many methods in

one class

return type

name

Parameter type

Parameter
name

return
statement

Static vs. Non-static Methods
• Non-static methods are called on a created object.

Has access to object data and arguments.

• Static methods are called on the class. Only has
access to arguments. Often utility “functions.”

1/17/24 CompSci 201, Spring 2024, Java 35

Note that split is
called on a String

object

Whereas sqrt is
called on the Math

class

Anatomy of a Java collections
data structure

• An import statement:
• Goes outside the class, top of the file

ArrayList<Integer> list = new ArrayList<>();

1/17/24 CompSci 201, Spring 2024, Java 36

Collections
type

Element
type

Variable
name

Allocate
memory

Call constructor
method to initialize

Java API ArrayList data structure

ArrayList is most like a Python list

• Access by index access but can grow dynamically

• Uses add(), get(), size(), contains()

1/17/24 CompSci 201, Spring 2024, Java 37

.add() appends to
end of list

.get(i) returns i’th
index element

.contains(x)
returns true if x in

list

.size() returns
number of elements

ArrayList methods reference

1/17/24 CompSci 201, Spring 2024, Java 38

Method Notes

add(element) Appends element to end of list

get(index) Returns the index position
element (starting with 0)

contains(element) Searches list, returns true if
element is in the list, else false.

size() Returns the (integer) number of
elements in the list

set(index, element) Assigns element to the index
position (starting at 0), overwriting
the previous value.

remove(index) Remove the index position
element

See the full ArrayList documentation

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html

Live Coding

1/10/24 CompSci 201, Spring 2024, First Day 48

	Slide 1: L2: Intro to Java
	Slide 2: Logistics, Coming up
	Slide 3: Helper Hours
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Goals for 201?
	Slide 10: Fred Brooks, why is programming fun?
	Slide 11: Fred Brooks, cont.
	Slide 12: An Algorithmic Problem-Solving Process: UPIC
	Slide 13: A very brief history of Java
	Slide 14: Java is a compiled language
	Slide 15: The “Java Virtual Machine”
	Slide 16: Interlude: Compile and Run Java
	Slide 17: Pressing the “run” button in VS Code does these steps for you
	Slide 18: Basic anatomy of a Java program
	Slide 19: Java uses {} to denote blocks and ; to end statements
	Slide 20: Java is strongly typed
	Slide 21: Strong typing allows the compiler to help you avoid mistakes
	Slide 22: Java primitive types
	Slide 23: Java basic operators
	Slide 24: Java reference types
	Slide 25: Java arrays
	Slide 26: Special Case: String
	Slide 27: Java Strings: concepts and methods
	Slide 28: More String methods: split and join
	Slide 29: Java conditionals
	Slide 30: Java loops
	Slide 31: Note on Java characters
	Slide 32: WOTO
	Slide 34: Anatomy of Java methods
	Slide 35: Static vs. Non-static Methods
	Slide 36: Anatomy of a Java collections data structure
	Slide 37: Java API ArrayList data structure
	Slide 38: ArrayList methods reference
	Slide 48: Live Coding

