L2: Intro to Java

Alex Steiger
CompSci 201: Spring 2024
1/17/24

Logistics, Coming up

* This Friday, 1/19
« First discussion section meetings

* Next Monday, 1/22
« Intro to OOP (object-oriented programming) in Java

* Next Wednesday 1/24
« Interfaces, Implementations, ArrayList data structure
« First APT set (short programming exercises) due
« Can discuss with peers, but code must be your
own. Policies page

Helper Hours

» What; Drop-in time to ask TAs questions about
course content (Concepts, Java, APTs,
Projects).

» When: Sunday-Thursdays

» Where: In-person and virtual options

* How:
« Try / think on your own
» OhHai queue to post your question
» Talk with a TA for ~5-15 minutes
* Iterate
* Details: See the Getting Help page of the
website.

1/22/2024

https://sites.duke.edu/compsci_201_001_sp24/policies/
https://sites.duke.edu/compsci_201_001_sp24/getting-help/

305 responses submitted

Where are you in your academic journey?

First year L === N
Second year T

Third year -

Fourth year | RS

Other 0%

1/22/2024

305 responses submitted

Are you a Pratt or Trinity student?

Pratt [o comemm—— N
Trinity e ———ee—— N
Neither |

305 responses submitted

Why did you decide to take CS 201 Data Structures and Algorithms? Select all that apply.

Considering major/minor in CS LU
Interested in the concepts [_____________________JEFH

Want to become better at programming (N 1%

Was recommended by friends [=== AN

Other - 2

1/22/2024

305 responses submitted

What programming course did you last take?

Compsci 101 at Duke - —e———— R
EGR 103 at Duke .
Online course -

Course in high school (eg. AP Cs) (N, s

No formal course [

305 responses submitted

With what programming language do you have the most experience / do you consider
your “first" or “primary” language?

Java O 2

Python = e eee———
C/C++ - o

Other -

£ o GEED @ e &

Goals for 2017

* Become proficient in Java / coding

* Improve problem-solving skills

« Learn real-world applications to other fields

« Learn to better communicate and collaborate
« Decide if want to pursue/majorin CS

« Build a foundation for more CS classes

Fred Brooks,
why is programming fun?
[

» Duke '53
» Founded CompSci @ UNC ‘64
+ Turing award '99

1. Sheer joy of making things. B

2. Pleasure of making things that are useful.

3. Fascination of fashioning complex puzzle-like
objects of interlocking moving parts.

4. Joy of always learning.

5. Delight in working in such a tractable medium.

10

Fred Brooks, cont.

+ ..Few media of creation are so flexible, so
easy to polish and rework, so readily capable
of realizing grand conceptual structures...

+ ..[Programming] is fun because it gratifies
creative longings built deep within us and
delights sensibilities [we all have in common]

11

An Algorithmic Problem-Solving
Process: UPIC

Understand

Understand the problem you're trying to solve. Read carefully, do examples.

Generalize insights, develop an algorithm.

|mp|ement Only doing a lot of
Translate the algorithm into code. [REUEINelgeleETaalaaligls]

' in this step!
Correctness

Test and debug to verify and fix the code.

12

1/22/2024

A very brief history of Java

B oo

1972 1985 1995

+ C. Streamlined language developed for writing
operating systems and low-level systems
utilities.

+ C++. Can do everything in C (manual memory
management), adds support for object-oriented
programming (OOP).

« Java. Requires OOP, Automatic memory
management, stronger compile time
guarantees, more device independent.

13
Java is a compiled language
How is the program you write in source code
translated into something instructions the
machine can execute?
Compiled Interpreted
« All at once * Line at atime
+ Compiler is another * Interpreter is another
program that translates ~ program that translates
source code into and runs a program line
machine code. by line.
* Run the executable, the « Python is an interpreted
output of the compiler. language.
14

The “Java Virtual Machine”

Hello.java — vscodeTest
© Heilo java % B @ -

® Hellojava
1 public class Hello {
A deb

Compiling Hello.java

public static void main(String[] args) {
System.out.println{"Hello World");

2
3
4 1
5

1 PAOBLEMS ~ OUTPUT DEBUGCONSOLE TERMINAL ma ~x

Creates (base) brandonfaindBrandons-MacBook-Air vscadeTest % javac Hello. java
(base) brandonfainEBrandons-MacBook-Air vscodeTest % Ls
Hello.class Hello.class Hello.jova

(base) brandonfaingBrandons-MocBook-Air vscodeTest % javap Hello.class
Compiled from “Hello. java"

Contains public class Hello {
"bytecode” Not public HelloO);
. Blic static vaid mainCjova. Lang.String(D;
machine code P st voud minCoe Lorg StrinstD)
Cbase) brandanfiain#Srandons-MocBook-Alr vacadsTest % java Hello
Hello Worl,

(base) BrandanfaindErandons-MocBosk-Air vscadsTest % [

15

1/22/2024

1/22/2024

Interlude: Compile and Run Java

javac Compile javafiles < javac file.java compiles and creates
to .class files file.class

javac *.java compiles all java files in
current directory to .class files.

java Run java class java file executes the main method of
files file.class. Must have already been compiled
from file.java.

See the javac documentation for more options

16

Pressing the “run” button in VS
Code does these steps for you

Hello,java — vscodeTest

® Helio.java X

Run buttons [———]
© Hello.java
1 public clgss T
Run{ Debug
2 public static void main(5tring[] args) {
3 System.out.println("Hello World");

All this extra info is
about the compile - LR UL +v oA
> run process zsh
brahoo ofBrandons -MacBook-Air vscodeTest ¥ /usr/bin/env
/Library/Jave/JavaVirtualMachines/liberica-jdk-17. jak/Contents/Ho | ok Java Proce
me/bin/java --enable-preview -XX:+ShosCodeDetai lsInExceptionMessag

Tt is tf es -cp */Users/brandonfain/Library/Application Support/Code/User/w
here Is the orkspaceStorage/833d2eb2075cabdabdef5F5020achd42/rednat . javal jdt_w
output s/uscodeTest_301392fd/bin” Hello

Hello World
(base) brandonfair@Brandons-MacBook-Air vscodeTest ¥

17

Basic anatomy of a Java program

Heflojavs 3

L
« Each Java source code file e

<className>.java tomehe e e

contains atleast public : =iiimcsmirl o !
4 +

className. 2

 To runa program, must have a public
static void main (PSVM) method

« Larger projects have multiple classes / .java
files; only one needs a PSVM to start program.

18

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html

Java uses {} to denote blocks and
; to end statements

; ends a statement /
denotes an operation

© Block jav
1 public class Block {

public static void mein(Sy
{..} denotes a block of code, e.g.,

int x = 43

if (X% 2 ==0){ ")
5 ‘System.out.println(even=); for an if statement, loop, or
€ ¥ method
7 else {
8 System.out.prin
9 Systen.out.printlnC"will this print?");

@ ¥ 1 x=4
i (%2 0):

(baso) brandon i n#Brandons-MocSank-Air exarples & jovec Block. jasg print("even")
Cbase) brandonfainSlirandons-NocBack-Air exarples ¥ jova Block else:

e even - 5 print("odd")

PROBLEMS OUTPUT DESUGCONSOLE TERMNAL

FintCwill this print?")

newline ends statement in Python (R L e P e

And indentation denotes blocks. |NMSSSESSS=IY/=Tg)
" i | . . .
: Stilla styleconventlonanaaA 3 will this pl’ll”lt?,

19

Java is strongly typed

Must be explicit about the type of every variable.

© Typejava
1 public class Type { & type.py
Run | Debug Lox=5
2 public static void main(String(] args) { 2 PrintO«/2)
3 int x = 5; X
4 System.out.println(x/2); Prints 2.5
5 } .
¢+ Prints2

Notice also that every method must
specify the type of what it returns (void
means nothing)

© Type java
1 public class Type {
!

public static void main(String[] args) {
int x = 5;
System.out.println{(double)x/2);

' Can castto
convert types

(NewType) var

s w

1
Prints 2.5

CompSci 201, Spring

20

Strong typing allows the compiler
to help you avoid mistakes

© StrongTypingjava 1 X
© StrongTyping.java > 4s StrongTyping > @ main(String[])

1 public class StrongTyping {
public static String getFirstWord(String s) {

2
3 return s.split(" ")[0];
4 }
un | Debug
5 public static void main(String[] args) {
6 * System.out.println(getFirstWord(201));
7
8 }
9

PROBLEMS @) OUTPUT DEBUG CONSOLE TERMINAL

(base) brandonfain@Brandons-MacBook-Air examples % javac StrongTyping.java
StrongTyping. java:6: error: incompatible types: int cannot be converted to

String
System.out.println(getFirsthord(201));

24 CompSci 201, Spring 2024,

21

1/22/2024

Java primitive types
* Primitive types in Java: Don't need new to
create.
« byte, short (rarely used in this course)
« int, long (common integer types)
« float, double (common decimal number types)

« boolean (true or false)

« char (for example, “a’ or “x?)

1/22/2024

22
Java basic operators

+, - Add, subtract

*, / Multiply, divide (careful with divide, 5/4 gives 1)

% Modulus (remainder in int division, if % 2 == 0 then even,
if % 2 == 1 then odd)

<, <= Less than, less than or equal to

, >= Greater than, greater than or equal to

== Equal (only for primitive types!!!)

| Logical NOT (la means a must not be true)

&& Logical AND (a && b means a and b need to be true)

I | Logical OR (a || b means at a, b, or both need to be true)

pri
23

Java reference types

Constructor method

to initialize. Always

has same name as
type.

new keyword
to allocate
memory

Variable
name

Scanner reader = new Scanner(

« Variable stores a reference to an object, i.e., a
place in memory.

« Can access instance variables and method calls
with the dot operator.

while (reader.hasNext()) {
String word = reader.next();

24

1/22/2024

Java arrays

An array holds a fixed number of values of a
single type.

Is an object, new Length of array
Type of elements allocates memory numbers 1engtvh

3 int[J] numbers = new int[5];
4 numbers[@] 201;
5 223

Error: Index 5 out of
bounds for length 5 at
Array.main(Array.java:6)

Shorthand for pre-initialized Array: int[1 myArray = {1, 2, 3};

25

Special Case: String

* NOT primitive, but can initialize in two ways:
e String s = “Hello”;
e String s = new String(“Hello”);

* + is overloaded to concatenate Strings:
e String s = “Hello”;
e String t = “ World”;
* System.out.println(s + t);prints “Hello World”

* NOT an array, but can access i-th char:
e char ¢ = t.charAt(1);
* System.out.println(c); prints“W"

26

Java Strings: concepts and
methods

Strings are objects that hold an array of characters.

I N =2 S A P O K T
0 1 2 3 4) 6 7 8 9
String message = "Hi (S 201!"; m

System.out.println(message.length());

System.out.println(message.charAt(@)); 4

System.out.println(message.substring(@, 4));
System.out.println(message.equals("Hi CS 201!"));

Can even convert to char[] and back\m

9 char[] letters = message.toCharArray();
10 String originalMessage = new String(letters);

N U s w

27

More String methods: split and
join
Can split a String into an array of Strings or
join an array of Strings to one String.

jshell> String original = "hello cs 201";
original ==> "hello cs 201"

jshell> String[] words = original.split(" ");
words ==> String[3] { "hello", "cs", "201" }

jshell> String combined = String.join(" ", words);

combined ==> "hello cs 201"

See the full String documentation here

28
Java conditionals
Condition must be
in parentheses
4 int x = 5; {} to enclose
5 if (x> block
6 System.out,println(x: "positive");
7 }
8 else if (x < @) {
9 System.out.println(x: "negative");
10 }
11 else { Else statements
12 System,out,println(x: "zero"); optional, can chain
13 1 elseif elseif ... else.
CompSci 201, Spring 2024, Java
29

Creates an int variable,
starting at 0, accessible
only inside the loop block.

Java loops

Loop while
i < numbers.length

Regular for

8 for (int i=0; i<numbers.length; i++) {
9 System.out.printlnCnumbers[i]);

Increase i by 1

10
’ each time through

Enhanced for, “for-each” loop loop

12 for (int number : numbers) {

13 System.out.println(number)y number takes each

14 } value in numbers
while in sequence

16 int i=0;

17 while (i < numbers.length) {

18 System.out.printlnCnumbers[i]);

19 i++;

20 }

24 Compsci 201, Spring 2024,

30

1/22/2024

10

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

1/22/2024

Note on Java characters

Java characters are ordered, comparable,

. ar: a, Val: 97

correspond to integer values. Char: b, Val: 98

Char: c, Val: 99

Char: d, Val: 108

9 for (char ch="a"; ch <= "z"; ch++) { (hnrj e, anj 101
10 System.out.printfCChar: %c, Val: %d¥n®, ch, (intdch); g ;: e
1 } Char: h, Val: 104
Char: i, Val: 105

Char: j, Val: 186

Char: k, Val: 167

Values are how characters are encoded on char: 1; vai: 108

. Char: m, Val: 109

a machine (ASC”) Char: n, Val: 118

31

WOTO

Not graded for correctness,
just participation.

Try to answer without
looking back at slides and
notes.

But do talk to your
neighbors!

32

Anatomy of Java methods

A function defined in a class. No “regular”
functions in Java, all methods.

Everything is inside a class,

can have many methods in
nple.java > 5 M . one class
agyclass MethodExample {

m Assumes numbers.length > @
int getMax(int[] numbers Parameter

4 int maxNumber = numbers[@]; name
for (int i=1; i<numbers.length; i++) {
if Chumbers[i] > maxNumber) {
maxNumber = numbers[i];

Parameter type

}
}
return maxNumber;
} return
statement

e woe

o

34

11

Static vs. Non-static Methods

+ Non-static methods are called on a created object.
Has access to object data and arguments.

« Static methods are called on the class. Only has
access to arguments. Often utility “functions.”

) StaticExample.java Note that split is

1 public class StaticExample { called on a String
Run | Debu object

2 public static void main(String[] args) {

3 String s = "Hello World!";

4 System.out.printin(s.split(" ")[01);

5 :

Whereas sqrt is

6 System.out. tln(Math. t(4.90));

5 } ysten:out:printlnQiathi.sarece.00) called on the Math

8 3} class

35
Anatomy of a Java collections
data structure
@ ArrayListExample.java >
« An import statement: 1 import java.util.Arraylist;
» Goes outside the class, top of the file
ArraylList<Integer> 1list = new ArraylList<>();
type memory method to initialize
201, Spring 2024
36
Java API ArrayList data structure
ArrayList is most like a Python list
« Access by index access but can grow dynamically
»Usesadd(), get(), size(), contains()
4 public static void main(String[] args) {
5 Arraylist<Integers> intlist = new Arraylist<>();
6 intlist.add(1);
8 int sum = @; number of elements
92
10 for (int i=0; i<intlist.size(); 1++) { .get(i) returnsith
11 sum += intlist.get(i); index element
12 } -
13 System.out.println{intList. contains(5)); .contalns_(x)_
returns true if x in
24 ompSci 201, Spring 2024, Jav list
37

1/22/2024

12

ArrayList methods reference

I T S
add(element) Appends element to end of list
get(index) Returns the index position

element (starting with 0)

contains(element) Searches list, returns true if
element isinthe list, else false.

size() Returns the (integer) number of
elements in the list

set(index, element) Assignselement tothe index
position (starting at 0), overwriting
the previous value.

remove (index) Remove the index position
element

See the full ArrayList documentation

38

Live Coding

48

1/22/2024

13

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html

	Slide 1: L2: Intro to Java
	Slide 2: Logistics, Coming up
	Slide 3: Helper Hours
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Goals for 201?
	Slide 10: Fred Brooks, why is programming fun?
	Slide 11: Fred Brooks, cont.
	Slide 12: An Algorithmic Problem-Solving Process: UPIC
	Slide 13: A very brief history of Java
	Slide 14: Java is a compiled language
	Slide 15: The “Java Virtual Machine”
	Slide 16: Interlude: Compile and Run Java
	Slide 17: Pressing the “run” button in VS Code does these steps for you
	Slide 18: Basic anatomy of a Java program
	Slide 19: Java uses {} to denote blocks and ; to end statements
	Slide 20: Java is strongly typed
	Slide 21: Strong typing allows the compiler to help you avoid mistakes
	Slide 22: Java primitive types
	Slide 23: Java basic operators
	Slide 24: Java reference types
	Slide 25: Java arrays
	Slide 26: Special Case: String
	Slide 27: Java Strings: concepts and methods
	Slide 28: More String methods: split and join
	Slide 29: Java conditionals
	Slide 30: Java loops
	Slide 31: Note on Java characters
	Slide 32: WOTO
	Slide 34: Anatomy of Java methods
	Slide 35: Static vs. Non-static Methods
	Slide 36: Anatomy of a Java collections data structure
	Slide 37: Java API ArrayList data structure
	Slide 38: ArrayList methods reference
	Slide 48: Live Coding

