[3: Object-Oriented
Programming (OOP)

Alex Steiger
CompSci 207: Spring 2024
1/22/24

ogistics, Coming up

* This Wednesday, 1/24
* Interfaces, Implementations, ArrayList data structure

« First APT set (short programming exercises) due
« Any time on 1/24, one day late with no penalty
« 10%/day penalty thereafter, max 1 week

 This Friday, 1/26
» Discussion 2: APTs, Sets, Strings, Git

* Next Monday 1/29
* Project 0: Person201 due (warmup project)
« See link on Schedule

https://sites.duke.edu/compsci_201_001_sp24/schedule/

Schedule

APT Server (link for viewing and submitting APTs)
GitLab (projects and example code)

Lecture recordings

Note that this schedule tentative and subject to change.

Week Day Reference In Class Due
1 M 1/8 No meeting
W Z8 L1: What is Computer Science? [recording] [slides] [slides-3up] [code]
110
F1/12 No meeting - Setup tech
2 M No meeting - M.L.K. Jr. Day
1/15
W 21-27 L2: Intro to Java [recording] [slides] [slides-3up]
117
F1/19 D1: Algorithmic Problem Solving [discussion document] [solutions]
3 M Z9 L3: PO, Object-Oriented Programming [slides] [recording]
1/22
W Z10 L4: Interfaces, Implementations, ArrayList [slides] [recording] [code] APT 1
1/24
F1/26 D2: Java, Git [discussion document]
4 M Z11 L5: Maps, and Sets [slides] [recording] PO: Person201
1/29
W 7212 L6: Hashing, HashMaps, Hashsets [slides] [recording] APT 2

I /22/23 1/31

Course Policy Reminders

« Collaboration reminder: Can discuss projects and
APTs conceptually, but code must be your own.

* |f you can't write the code yourself, you're not going
to be ready for whatever you want to do next.
» Getting Help reminder: We want to help!
» Getting Help page
« Su-Th every evening, Use OhHai to queue
« Some daytime hours, plus Ed discussion

» Expect help about your process and how to make
progress — not “solutions” or for TAs to debug your
code for you.

https://sites.duke.edu/compsci_201_001_sp24/getting-help/

Java Intro Wrap-up

Anatomy of Java methods

A function defined in a class. No “regular” functions in
Java, all methods.

Everything is inside a class,

can have many methods in
ple.java > & Motk _— one class

int getMax(int[] numbers Parameter
int maxNumber = numb
for (int 1=1; i<numbers.length; i++) {
1f (numbers[i] > maxNumber) {

Parameter type

maxNumber = numbers[i];
8 3
9 }
10 return maxNumber;
11 } return

statement
1/22/23 CompSci 201, Spring 2024, OOP

Static vs. Non-static Methods

» Non-static methods are called on a created object.
Has access to arguments and object data.

e Static methods are called on the class, no access to
object data. Often called utility “functions.”

) StaticExample.java > ... Note that split is
1 public class StaticExample { called on a String
Run | Debug object
2 public static void main(String[] args) {
3 String s = "Hello World!";
4 System.out.println(s.split(" ")[0]);
5 .
: Whereas sqgrt is
6 System.out.println(Math.sqrt(4.0));
-) Y g (art(4.0)) called on the Math
g 1 class

1/22/23 CompSci 201, Spring 2024, OOP 7

Java API Collections,

Primitive vs. object types

Why ArrayList<Integer> ... instead of
ArraylList<int>..?

« Java API Collections (ArrayList, HashSet, ...) only
store reference types, not primitive types.

« Integer isa“wrapper class’ for int, can convert
back and forth "automatically.”

Same principle for
other primitive types,

int primitivelnt = 201;
Integer objectInt = primitivelnt; e.g, double vs.
primitiveInt = objectlInt; Double

1/22/23 CompSci 201, Spring 2024, OOP 8

ArraylList <-> Array Conversion,
Primitive Types

18 ArraylList<Integer> intList = new ArraylList<>();
19 int[] intArray = {2, 0, 1};

20

21 // Convert a int (or other primitive type) Array
22 // to a List by adding one at a time

23 for (int number : intArray) {

24 intList.add(nhumber);

25 }

26

27 // Convert an Integer list to an int[] or

28 // other primitive type array one at a time

29 int[] newIntArray = new int[intList.size()];

30 for (int 1=0; i<intList.size(); i++) {

31 newIntArray[i] = intList.get(i);

32 }

1/22/23 CompSci 201, Spring 2024, OOP

Java AP| HashSet

« More on HashSet |ater, but the basics:
« At top of file, import with: import java.util.HashSet;
 Part of Java API Collections like ArrayList
« Uses add(), size(), contains () like ArrayList
* Does not store duplicates nor order items(no get())

4 public static void main (String[] args) {

5 HashSet<String> strSet = new HashSet<>();

6 strSet.add("Hello");

7 strSet.add("World");

8 strSet.add("Hello"); Prints 2, no
9 duplicates
10 1f(strSet.contains("World")) {

11 System.out.println(strSet.size());
12 }

1/22/23 CompSci 201, Spring 2024, OOP 10

Pl Documentation

Reading documentation is an important skill:
docs.oracle.com/en/java/javase/1//docs/api

PVERVIEW MODULE PACKAGE USE TREE PREVIEW NEW DEPRECATED INDEX HELP Java SE 17 & JDK 17

{UMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD SEARCH:I A X‘

Module java.base
Package java.util

Class ArraylList<E>

java.lang.Object
java.util.AbstractCollection<E>
java.util.AbstractList<E>
java.util.ArrayList<E>
Type Parameters:
E - the type of elements in this list

All Implemented Interfaces:
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess

Direct Known Subclasses:
AttributelList, RoleList, RoleUnresolvedList

public class ArraylList<E>
extends AbstractlList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

Resizable-array implementation of the List interface. Implements all optional list operations, and permits all elements, including null. In addition to implementing the List interface, this class
provides methods to manipulate the size of the array that is used internally to store the list. (This class is roughly equivalent to Vector, except that it is unsynchronized.)

The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires O(n) time. All
of the other operations run in linear time (roughly speaking). The constant factor is low compared to that for the LinkedList implementation.

Each ArrayList instance has a capacity. The capacity is the size of the array used to store the elements in the list. It is always at least as large as the list size. As elements are added to an
Arraylist, its capacity grows automatically. The details of the growth policy are not specified beyond the fact that adding an element has constant amortized time cost.

An application can increase the capacity of an ArrayList instance before adding a large number of elements using the ensureCapacity operation. This may reduce the amount of incremental
reallocation.

1/22/23 CompSci 201, Spring 2024, OOP

11

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

WOTO
Go 1o

Not graded for correctness,
Just participation.

Try to answer without

looking back at slides and
notes.

But do talk to your
neighbors!

Java style and comments

Class names:
» Capitalized & CamelCase

. ® MethodExample.java > %2 MethodExample
* MUST match name O]c ,Java 1 public class MethodExample {

® MethodExample.java X

file!
Comments:
. 2 // one line comment
 // for one line 3 /* a
. . 4 block
¢ /* 7'</ for mU|t|p|e ||neS 5 comment
6 */

1/22/23 CompSci 201, Spring 2024, OOP 14

Javadoc: Advanced comments

cnn?ﬂ1Fnrfhr:~;’ri . 8 Person201 alex = new PersonZB;l
Person201.Person201(String name, do x & Person201()
|uble lat, double lon, String phras @ Person201(String name, double lat, double lo..
le) & Person201Closest()
- @ Person201Dema ()

Construct Person201 object with information @ Person201Farthest()

& Person201NearbyDemo ()
* Parameters: @ Person201Utilities()

‘ _ tem.ouvt.println(p);
o npame typically first name of person
out.printf("names: "):
son201 p : people) {
tem.out.print(p.getName()+" "):

o lat latitude, negative for southern
hemisphere

o lon longitude, negative for western
hemisphere out.printin();

o phrase for person

1/22/23 CompSci 201, Spring 2024, OOP 15

Writing Javadoc

31 [**

32 * Construct Person201 object with information

33 * @param name typically first name of person

34 * @param lat latitude, negative for southern hemisphere
35 * @param lon longitude, negative for western hemisphere
36 * (@param phrase for person

37 %/

38 public Person201(String name,

39 double 1lat, double 1lon,

40 String phrase) 1

41 myName = name;

42 myLatitude = lat;

43 myLongitude = 1lon;

44 myPhrase = phrase;

45 3

‘Common annotations for methods include:
©Oparam, (@returns, (©@throws

1/22/23 CompSci 201, Spring 2024, OOP 16

Object-Orientea
Programming (OOP)

Java is object-oriented

A language is object-oriented if programs in that language
are organized by the specification and use of objects.

« “An object consists of some internal data items plus
operations that can be performed on that data."—zyBook

We call these

methods
4 » public class StaticUniqueWords {
5 p public static void main(String[] args) throws IOException {
6 Scanner s = new Scanner(new File(pathname: "data/kjv10.txt"));
7 HashSet<String> set = new HashSet<>();
8 int wcount = 0; : .
9 double start = System.nanoTime(); Scanner isa Class, s is
10 i
11 while (s.hasNext()) { afl ObJe.Ct.' Keeps t.raCk of
12 weount += 1: where it is in the file and
13 String word = s.next(); can get the next word.
14 set.add(word);
15 }

1/22/23 CompSci 201, Spring 2024, OOP 18

Aside: Python uses objects too

Python 3.8.10 (default, May 26 2023, 14:05:08)
[GCC 9.4.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> s = "Hello world"
>>> words = s.split(" ")

>>> print(words) " :
['Hello', 'World'] Split is a method (in Java terms)

that belongs to the String object
s on which it is called

Same syntax in Python and Java for method calls:
<object>.<method>(<method_arguments>)

1/22/23 CompSci 201, Spring 2024, OOP

19

Object Concept
All different objects, but

Consider points in two-dimensions. el OF ThE S lEss

Class is a blueprint for these
objects

Data (instance variables)
« x-coordinate (x)
« y-coordinate (y)

Operations (methods)
Create a point
Print a point
Change coordinates
Get distance to another Methods should be

point Each point object has

. able to operate on a
its own x and y value.

particular point

1/22/23 CompSci 201, Spring 2024, O0P 20

Language History: A story of
increasing abstraction and
organization

Imperative Programming (Fortran |, etc.)

Code organized
into a linear
seqguence of
operations.

All data accessible
as variables in the

same global scope.

Procedural Programming (C, etc.)

Procedures or
functions, that can
be called by a main
program.

Local versus global
variables.

1/22/23

Object-Oriented
Programming
(Java,etc.)

Define more complex
variable types using
classes, use to create
objects.

Methods to go along with
specific classes/types.

CompSci 201, Spring 2024, OOP 21

Classes and objects

Class specifies the data and operations for a type of
object. They are a template or a blueprint for objects.
Alternately, objects are instances of a class.

® Point.java > %2 Point > @ Point(double, double) In§tance yarlables. Each
1 public class Point { Point object has its own

public double x; X and y value.
public double y;

A constructor method specifies
how to create a new Point
object. Same name as class.

public Point(double x,
this.x = Xx;
this.y = vy;

double y) {

3

this keyword refers to

O 0 N O U1 H WHN

. (dot) operator accesses
instance variable or method
of this object

object on which
method is called.

1/22/23 CompSci 201, Spring 2024, OOP 22

Creating objects, calling methods

Method defined
inside the point

10 public void printPoint() { class
11 System.out.printf("(%.1f, %.1f)%n", x, y);
12 } .

new Poilnt allocates
14 ~ public static void main(String[] args) { memory and calls the
15 Point p = new Point(-2.0, 2.0); constructor to set the
16 Point q = new Point (1.0, 1.0); instance variables
17
18 p.printPoint(); (-2.0, 2.0)
19 g.printPoint();
20 } (1.0, 1.0)

Note how the printPoint () method “knows” the correct
value for X and y — they are stored with the objects on which
we call the method as instance variables.

1/22/23 CompSci 201, Spring 2024, O0P 23

Two reasons to call a method

O Co N O 1

10

12

1/22/23

For the side effect, what

It did to the object

public static void mai gl] args) {
HashSet<Stria#® strSet = new HashSet<>();
strSet.add("Hello");
strSet.add("World");
strSet.add("Hello");

if(strSet.contains("World")) {
System.out.prin® rSet.size());

For the return value

CompSci 201, Spring 2024, OOP 24

WOTO
Go 1o

Not graded for correctness,
Just participation.

Try to answer without

looking back at slides and
notes.

But do talk to your
neighbors!

== 0Ol .equals()"”

O Pointjava e For primitive types: ==
® Point.java > %2 Point > @ main(String[])
1 public class Point { CheCkS fOr equal V8|U€S
2 public double x;)
o public dowle y; For objects, == generally
5 public Point(double x, double y) { does nOt’ Compares
6 this.x = x;
: this.y - y: references (memory
s ! locations)
10 g:&azitiftatic void mgin(StFing[] args) { ® Need tO use . equals ()
" i g o g O B0 method for objects.
13 Point r = new Point(0.0, 0.0);
14 M° Correct way to compare
12 zystem.out.pr?ntln(p == q)f St r\ing ObJeCtS
ystem.out.println(p == r); .
7ok W * Must be implemented
19} for the given Class!
1/22/23 CompsSci 201, Spring 2024, OOP 27

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29

1/22/23

Default Object .equals

/*
@0verride
public boolean equals(Object o) {
Point other = (Point) o;
if ((this.x == other.x) && (this.y == other.y)) {
return true;

}

return false;

}

*/ Prints false, is just
checking memory

Run | Debug locations

public static void main(String[] args) {
Point p = new Point(0.0, 0.0);
Point r = new Point(0.0, 0.0);
System.out.println(p.equals(r));

CompSci 201, Spring 2024, OOP 28

Overriding default Object .equals

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29

1/22/23

@0verride
public boolean equals(Object o) {
Point other = (Point) o;
if ((this.x == other.x) && (this.y == other.y)) {
return true;

}

return false;

} Prints true, is using
the method we
wrote to check

Run | Debug

public static void main(String[] args) { values

Point p = new Point(0.0, 0.0);
Point r = new Point(0.0, 0.0);
System.out.println(p.equals(r));

CompSci 201, Spring 2024, OOP 29

Object vs. object, Inheritance?

» Object: ancestor of all classes
 Default behavior that's not too useful, ...
« @Override for .equals

 object — synonym for instance of a class

« What you get when you call new (technically, a
reference to it)

* [nheritance is a major topic in object-oriented
programming to which we will return!

How do | know what .equals
does for Java API classes?

Read at the Java APl documentation!!!

docs.oracle.com/en/java/javase/1//docs/

public class ArrayList<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

Resizable-array implementation of the List interface. Implements all optional list operations, and permits all
elements, including null. In addition to implementing the List interface, this class provides methods to
manipulate the size of the array that is used internally to store the list. (This class is roughly equivalent to
Vector, except that it is unsynchronized.)

equals

public boolean equals(Object o)

Compares the specified object with this list for equality. Returns true if and only if the specified object is
also a list, both lists have the same size, and all corresponding pairs of elements in the two lists are equal.
(Two elements el and e2 are equal if (el==null ? e2==null : el.equals(e2)).) In other words, two lists
are defined to be equal if they contain the same elements in the same order.

1/22/23 CompSci 201, Spring 2024, OOP 31

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

Q: When do | need new?

A: Every time | want to create an object, not automatic!

1 public class Point {

2 public double x; We created the array,

3 public double y; but it is filled with

4 public Point(double x, double y) { null's did not call new

3 th’}s'x =% for the individual Point

6 this.y = y; objects

7 } :
Run | Debug

9 public static void main(String[] args) {

10 Point[] pointArray = new Point[5];

11 System.out.print(pointArray[@].x);

12 }

Exception in thread "main" java.lang.NullPointerException: Cann
ot read field "x" because "pointArray[@]" is null
at Point.main(Point.java:11) Point. java:11

1/22/23 CompSci 201, Spring 2024, O0P 32

When do | need new again? For
every object you want to create!

An even stranger error... creating one object but
multiple references to it.

5 public static void main(String[] args) {

6 ArraylList<Point> myPoints = new ArraylList<>(); IJ
7 Point p = new Point(0.0, 0.0);

8 myPoints.add(p);

9 p.x = 2.0;
10 myPoints.add(p);
11
12 for (Point q : myPoints) {
13 g.printPoint(Q); . / \
14 3 myPoints:
(2.0, 0.0)

Prints (2.0, 0.0

1/22/23 CompSci 201, Spring 2024, OOP 33

O oo ~NOoOY WUV A WMN B

=
()

11
12
13
14
15
16
17
18

1/22/23

Run | Debug
public static void main(String[] args) {

Creating a List of points;
contalns uses equals

import java.util.Arraylist;

public class Point {

public double x;

public double y;

public Point(double x, double y) {
this.x = x;

this.y = vy; Good, we called new

for every Point

object we want to
create.

ArrayList<Point> pointList = new ArraylList<>();
for (int 1=0; 1<10; i++) {

pointList.add(new Point(0.0, 0.0)); Prints false. ArraylList
} .contains loops over list
Point p = new Point(0.0, 0.0); Checking .equals(), but

System.out.println(pointList.contai ; : '
ystem.out.printin(pointlist.contains(p)); only default implementation

herel

CompSci 201, Spring 2024, OOP 34

(Im)mutability

« An object is immutable if you cannot change it after
creation. Methods that change objects are called
mutators.

 Java Strings are immutable, even though you can
‘append” to them. Creates a new String and assigns
It every time!

String s = "Hello";

String t = s; Prints “s: Hello World"
s += " World";
System.out.printf("s: %s\n", SJ;-

System.out.printf("t: %s\n", t); Prints “t: Hello”

1/22/23 CompSci 201, Spring 2024, OOP 36

Static belongs to the class

« Non-static methods are called on an object, can use
non-static instance variables (belong to object)

e Static methods are called on the class, cannot use
non-static instance variables.

 Often called utility “functions”

) StaticExample.java > ... Note that split is
1 public class StaticExample { called on a String

Run | Debug object

2 public static void main(String[] args) {

3 String s = "Hello World!";

4 System.out.println(s.split(" ")[0]);

5 .
6 System.out.println(Math.sqrt(4.0)); Whereas sqrt is
5 1 called on the Math
g 1 class

1/22/23 CompSci 201, Spring 2024, OOP 37

Public vs. Private

 Public — Can be Record.java > % Record

1 public class Record {
aCCGSSGd by COde 2 public String displayName;
outside of the class. 3 private int uniquelD;
4
* Private — Can On/y be s public Record(String name, int id) {
accessed by Code 6 displayName = name;
. . 7 uniquelD = id;
inside of the class. y
9
PublicPrivate.java > ...
1 public class PublicPrivate {
Run | Debug Can access this public
public static void main (String[] args) { instance variable

Record rec = new Record("Fain", 12345);
System.out.println(rec.displayName);
System.out.println(rec.uniquelD);

¥ Cannot access this private
[instance variable

1/22/23 CompsSci 201, Spring 2024, OOP 38

SV B~ W

The value of privacy

Suppose your entire system crashes terribly if some
code is called on a negative uniquelD.

) Record.java > %3 Record

1 public class Record { uniquelD is private,

2 public String displayName; so other code cannot

3 private int uniquelD; directly change it

4

5 public Record(String name) { Can check for

6 displayName = name; .

. y correctness in only code
3 allowed to change
9 public void setID(int id) uniquelD

10 if (id < @) {

11 System.out.println("Must be nonnegative");

12 }

13 else {

14 uniquelD = id;

15 }

16 }

1/22/23 CompSci 201, Spring 2024, O0P 39

PSVM: Public Static Void Main

MethOd that IS ® MainExample.java > ...

. 1 public class MainExample {
* public - can call
outside of class

« static — belongs to
class, not an object

« vo1d — no return value

« main - starting point
for a program to run

public static void main(String[] args) {
for (String s : args) {
System.out.println(s);
}

~No U W

$javac MainExample.java
$java MainExample Hello World!

args allows for Hello
command-line arguments yworid!
$

1/22/23 CompSci 201, Spring 2024, OOP 40

APT and OOP, m
metr

aking a PSVM
od

Suppose you're working on t

public class SandwichBar {

// fill in code here
return 0;

}

oUW

}
Remember what you know a

ne SandwichBar APT.

public int whichOrder(String[] available, String[] orders){

bout Java OOP:

« whichOrder is a non-static method, need to call on

an object of the Sandwich

Bar class.

« whichOrder has parameters, need to supply those.
* All java programs must begin in a PSVM method.

1/22/23 CompSci 201, Spring 2024, OOP 41

https://www2.cs.duke.edu/csed/newapt/sandwichbar.html

S Ul AW

O o ~

10
11
12
13
14

APT and OOP:
Making a PSVM method

public class SandwichBar {
public int whichOrder(String[] available, String[] orders){

// fill in code here
return 0; PSVM method can be in the same class orin a

} separate “driver” class in the same directory.

Run | Debug Creating test parameters, using
public static void main(String[] args) { example from APT site.

String[] testAvailable = { "ham", "cheese", "mustard"
String[] testOrders = { "ham cheese" }; Make a SandwichBar
SandwichBar testInstance = new SandwichBar(); object

int testResult = testInstance.whichOrder(testAvailable, testOrders);

System.out.println(testResult);
) Call the method

1/22/23 CompSci 201, Spring 2024, OOP 42

Why use Classes/objects?

» Because you must in Java
» Formal specification for complex data structures
« Convenience and ease of correct programming

« Composition, Interfaces, & Implementations,
Extending & Inheritance — More later!

It's ok to not be fully “convinced” yet. But OOP has
proven itself to be a powerful paradigm for designing
complex, scalable software.

	Slide 1: L3: Object-Oriented Programming (OOP)
	Slide 2: Logistics, Coming up
	Slide 3: Schedule
	Slide 4: Course Policy Reminders
	Slide 5: Java Intro Wrap-up
	Slide 6: Anatomy of Java methods
	Slide 7: Static vs. Non-static Methods
	Slide 8: Java API Collections, Primitive vs. object types
	Slide 9: ArrayList <-> Array Conversion, Primitive Types
	Slide 10: Java API HashSet
	Slide 11: API Documentation
	Slide 12: WOTO
	Slide 14: Java style and comments
	Slide 15: Javadoc: Advanced comments
	Slide 16: Writing Javadoc
	Slide 17: Object-Oriented Programming (OOP)
	Slide 18: Java is object-oriented
	Slide 19: Aside: Python uses objects too
	Slide 20: Object Concept
	Slide 21: Language History: A story of increasing abstraction and organization
	Slide 22: Classes and objects
	Slide 23: Creating objects, calling methods
	Slide 24: Two reasons to call a method
	Slide 25: WOTO
	Slide 27: == or .equals()?
	Slide 28: Default Object .equals
	Slide 29: Overriding default Object .equals
	Slide 30: Object vs. object, Inheritance?
	Slide 31: How do I know what .equals does for Java API classes?
	Slide 32: Q: When do I need new?
	Slide 33: When do I need new again? For every object you want to create!
	Slide 34: Creating a List of points; contains uses equals
	Slide 36: (Im)mutability
	Slide 37: Static belongs to the class
	Slide 38: Public vs. Private
	Slide 39: The value of privacy
	Slide 40: PSVM: Public Static Void Main
	Slide 41: APT and OOP, making a PSVM method
	Slide 42: APT and OOP: Making a PSVM method
	Slide 43: Why use Classes/objects?

