| 4: Interfaces and
Implementations,
ArrayList

Alex Steiger
CompSci 207: Spring 2024
1/24/24

ogistics, Coming up

« Today, Wednesday, 1/24
« APT 1 due

 This Friday, 1/26
» Discussion 2: APTs, Sets, Strings, Git

« Next Monday 1/29

* Project 0: Person2071 due (warmup project)

* Next Wednesday 1/31
« APT 2 due

Daytime Office Hours

* Mondays 10am-12pm with Mark
» LSRC D309

» Tuesdays 1-3pm with Eamon
« LSRC D309

 Thursdays 10-1Tam, 3-4pm with Alex
« LSRC D344 and Zoom

Reminder: Course Resources

« Getting Help
« zyBook >
« Java4Python

1/24/24

1. Introduction to Java
2. Integers, Doubles, Booleans

3. Characters and Strings

16. Recursion
4. Input / Output

5. Branches / If Statements 17. Sorting Theory and Practice

6. Loops 18. Stacks, Queues, Heaps
7. Arrays 19. Binary Search Trees
8. Introduction to Data Structures and Algorithms 20. Greedy

9. Object-Oriented Programming in Java .
) g g 21. Binary Heaps

10. Interfaces, Implementations, ArrayList _
22. Balanced Binary Search Trees

11. Maps and Sets
23. Graphs

12. Hashing and Inheritance

24. Graph Algorithms
13. Efficiency and Complexity of Algorithms
14. Memory, Pointers, and LinkedList

15. Debugging and Testing

CompSci 201, Spring 2024, ArrayList 4

https://sites.duke.edu/compsci_201_001_sp24/getting-help/
https://runestone.academy/ns/books/published/java4python/index.html

PO duke.zoom.us

Duke

Video Conferencing

Connect to a meeting in progress
Start a meeting
Configure your account

NOTE: Duke content will not be used to train artificial intelligence (Al).
Healthcare and education institutions have a separate agreement that
supersedes Zoom’s online terms of service. To learn more about Al and
Duke’s agreement with Zoom, visit https://oit.duke.edu/news/zooms-
updated-terms-service/.

Made with ZOOIM

1/24/24 CompSci 201, Spring 2024, ArrayList

http://duke.zoom.us/

P0: Enabling Cloud Recordings

Dlee 188287090666 SALES PLANS

Profile

| Q, Search Settings |

Meetings

Webi
eoinars General Meeting Al Companion Recording Calendar Audio Conferencing Zoom Apps V

Personal Contacts

Personal Devices Recording
Whiteboards .
Local recording C)
Surveys @ Allow hosts and participants to record the meeting to a local file. The content will include video and
shared content with user's own view, and audio only file.
Recordings
Clips .
p @ Cloud recording ()
Scheduler Allow hosts to record and save the meeting / webinar in the cloud

Record active speaker with shared screen

(] Record gallery view with shared screen @
Reports . .
(") Record active speaker, gallery view and shared screen separately

Account Profile (] Record audio-only files

1/24/24 CompSci 201, Spring 2024, ArrayList 6

P0: Submitting to Gradescope

COMPSCI 201 Spring 2024

Course ID: 693578 © No Published Grades

Description

Edit your course description on the Course Settings page.

Things To Do

O Review and publish grades for PO: Person 201 (Code) now that you're all done grading.

< Active Assignments Released Due (EST) » % Submissions % Graded $ Published

—
PO: Person 201 (Code) jAN 22, 2024 9:00 AM JAN 29, 2024 11:59 PM 5 100% O
Late Due Date: FEB 5, 2024 11:59 PM ’

T) .
JAN 22, 2024 9:00 AM JAN 29, 2024 11:59 PM 2 \ 0% O
Late Due Date: FEB 5, 2024 11:59 PM ’

P0O: Person 201
(Analysis)

——) P
JAN 22,2024 1:00 PM JAN 26, 2024 11:59 PM 9 ‘ 00/, O
Late Due Date: JAN 28, 2024 11:59 PM °

Optional Gradescope
WOTO

1/24/24 CompSci 201, Spring 2024, ArrayList

OOP (Object-Oriented
Programming) Wrapup

Public vs. Private

 Public — Can be Record.java > % Record

1 public class Record {
accessed by COde 2 public String displayName;
outside of the class. 3 private int uniquelD;
4
* Private — Can On/y be s public Record(String name, int id) {
accessed by Code 6 displayName = name;
- . 7 uniquelD = id;
inside of the class. y
9
PublicPrivate.java > ...
1 public class PublicPrivate {
Run | Debug Can access this public
public static void main (String[] args) { instance variable

Record rec = new Record("Fain", 12345);
System.out.println(rec.displayName);
System.out.println(rec.uniquelD);

¥ Cannot access this private
[instance variable

1/24/24 CompSci 201, Spring 2024, ArrayList 9

SV B~ W

What about neither?

o PUb“C . Caﬂ be Record.javaf%gRecord
public class Record {
acce'?jsedf b%/ Colde public String displayName;
outsige ot the class.

private int uniquelD;

* Private — Can only be
accessed by code
inside of the class.

public Record(String name, int id) {
displayName = name;
uniquelD = id;

O o ~NOoYU1 A WMN B

}

J Recordjava .. * NO mOdiﬁer — Can be
1 class Record { :
2 String displayName; accessed by code in
° int uniqueld; the same package
, .
i e nene: 0w 2 1« Almost the same as
7 uniqueID = id; f PUbllC for 201 COde
8 F . .
9 1 « Use Public/Privatel!
1/24/24 CompSci 201, Spring 2024, ArrayList 10

.contains for List

contains

boolean contains(0Object o)

Returns true if this list contains the specified element. More
formally, returns true if and only if this list contains at least one
element e such that (o==null ? e==null : o.equals(e)).

Specified by:

contains in interface Collection<E>

Parameters:

o - element whose presence in this list is to be tested

Returns:

true if this 1list contains the specified element

1/24/24 CompSci 201, Spring 2024, ArrayList 11

T (Y, S T AT

(1]

11
12
13
14
15
16
17
13

What is printed?

I 1 import java.util.Arraylist;

public class Blob {
public 5tring color;
public 5tring shape;
public Blob(5tring color, S5tring shape) { Run | Debug

el M)

public class ElobDriver {

this.color = color; 4 public static void main(String[] args) {
this.shape = shape; 5 ArraylList<Blob> myBlobs = new ArraylList<=();
1 & String[] colors = {"red", "white", "blue", “green"};
7 Stringl] shapes = {"round”, "oblong™, "square”};
@0verride g for (String color : colors) {
public boolean equals{Dbject obj) { 9 for (5tring shape : shapes) {
Elob other = (Elob) obj; = 10 Blob newBlob = new Blob(color, shape);
if (other.shape.equals(this.shape)) { 11 if (! myBlobs.contains(newBlob)) {
return true; 12 myBlobs. add{newBlob};
} 13 }
return false; 14 }
15 }
. 16 System,out,println(myBlobs.size());
d Blobs are equal if they 17 } ’ ‘ ’
have the same shape 18} Try adding a Blob of

1/24/24

(and any colors)

CompSci 201, Spring 2024, ArrayList

every color-shape
combination

12

Why use Classes/objects?

» Because you must in Java

» Formal specification for complex data
structures

« Convenience and ease of correct programming

« Composition, Interfaces, & Implementations,
Extending & Inheritance — More |ater!

It's ok to not be fully “convinced” yet. But OOP has
proven itself to be a powerful paradigm for
designing complex, scalable software.

Interfaces and
Implementations

Abstract Data Type (ADT)

« ADT specifies what a data structure does
functionality) but not how it does it
implementation).

« API (Application Program Interface) perspective:
What methods can | call on these objects, what
iInputs do they take, what outputs do they return?

» For example, an abstract List should...
« Keep values in an order
« Be able to add new values, grow
« Be able to get the first value, or the last, etc.
« Be able to get the size of the list

Java Interface

* One primary way Java formalizes ADTs is with
interfaces, which “specify a set of abstract
methods that an implementing class must
override and define.” — ZyBook

« 3 most important ADTs we study are all
interfaces in Javal!
* List: An ordered sequence of values

 Set: An unordered collection of unigue
elements

* Map: A collection that associates keys and
values

The Java Collection Hierarchy

Collection

Implementing Classes

1/24/24 CompSci 201, Spring 2024, ArrayList 17

What is a collection?

public interface Collection<E>
extends Iterable<E>

The root interface in the collection hierarchy. A _collection represents a group of objects,

known as its elements. Some collections allow duplicate elements and others do not.
Some are ordered and others unordered. The JDK does not provide any direct
implementations of this interface: it provides implementations of more specific
subinterfaces like Set and List. This interface is typically used to pass collections
around and manipulate them where maximum generality is desired.

 Java API| data structures storing groups of objects
likely based on the Collection interface.

e Lists, Sets, Maps, and more

« Useful static methods (such as sorting) in
java.util.Collections (like Java.util.Arrays), see AP
documentation

1/24/24 CompSci 201, Spring 2024, ArrayList 18

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html

Interface vs. Implementation

Cannot instantiate an Interface object itself, but
rather an implementation ot that Interface

1 public class InterfaceExample {
List cannot be resolved to a type

2 public static void main(String[View Problem Quick Fix... (38.)
3 List<String> strList = new List<>();

4 }
What is an implementation?

* Must override and implement all methods.
 Can have any instance variables.

® DiYList.java > % DIYList o public class DIYList implements &L&E {
1 port java.util.List; /
2 public class DIYList implements List { 8 @verride
3 R 9 public int size() {
4 3 10 // TODO Auto-generated method stub
11 return 0;
> 12 }

1/24/24 CompSci 201, Spring 2024, ArrayList 19

Multiple Implementations of the
Same Interface

_ _ agesList (List ADT):
agesList = new List
Append(agesList, 55)
Append(agesList, 88) l 95 l (88] (SGJ
Append(agesList, 66)
Print(agesList)
Print result: 55, 88, 66 |\
Array-based implementation Linked list-based |mplementatlon
head
55 | 88 | 66
0 1 2 T3] 88 66
length: 3

ﬁ length: 3

Source: zyBook

1/24/24 CompSci 201, Spring 2024, ArrayList 20

Implementations must have all
methods of the Interface

Doesn’t matter for correctness whether the
argument Lists are ArrayList or LinkedList,
because both implement .contains().

17 public static List<String> inBothLists(List<String> alist,
18 List<String>, bList) {
19 List<String> retList = new ArraylList<>();

20 for (String s : alist) {

21 if (bList.contains(s)) { Method doesn't even
22 retlist.add(s); "know” how aList and
23 } bList are implemented.
24 }

25 return retlList;

26 . . . v
Since retList isan Arraylist

which implements List, it is a valid
return.

1/24/24 CompSci 201, Spring 2024, ArrayList 21

ArraylList
Implementation

Algorithmic tradeoffs depend
on the implementation

Often, we are interested in how the efficiency of operations
on data structures depends on scale. For an ArrayList with
N values how efficient is...

« get(). Direct lookup in an Array. “Constant time” — does
not depend on size of the list.

« contains(). Loops through Array calling .equals() at
each step. Takes longer as list grows.

« size(). Returns value of an instance variable tracking
size, does not depend on size of the list.

e add(). Depends.

How does ArraylList add work?

Implements List (can grow) with Array (cannot
grow). How?

Keep an Array with extra space at the end. Two
cases when adding to end of ArrayList:

1. Space left — add to first open position.

2. No space left — Create a new (larger) array,
copy everything, then add to first open
position.

Array representing List

+5 1221 19112277

DIY (do it yourself) ArrayList

Live Coding é

How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1. Space left — One Array assignment statement,
constant time, does not depend on list size.

2. No space left — Copy entire list! Takes N array
assignments!

How often are we in the second slow case?
Depends on how much we increase the Array size
by in case 2.

ArrayList Growth

Starting with Array length 1, if you keep creating a
new Array that...

s twice as large (geometric Has 100 more positions

growth) (arithmetic growth)
* Must copy at sizes: * Must copy at sizes:
+ 1,2,4,8,16,32, .. . 1,101, 201, 301, ..
 Total values copiedto < Total values copied to
add N values: add N values:
o 1+2+448+16+..N * 1+107+207+307+..+N

Algebra to our rescuel!

ArrayList Growth and Algebra

Geometric growth Arithmetic growth
1+24+44+--+N 1+1014+ 201+ -+ N

~log, N ~N /100
— z 2! = z 1+ 100i
=0]

Arithmetic series formula:

n

a; = (5) (ar + a)

=

1/24/24 CompSci 201, Spring 2024, ArrayList

Math and Expectations in 207

Do not expect you to formally derive closed
form expressions / give proofs.

* Do expect you to recognize:

Geometric growth: 1+ 2 +4 + -+ N is linear, = 2N.

Arithmetic growth: 1 + 101 + 201 + --- + N is quadratic, =
NZ
ﬁ.

 Patterns like these show up again and again!

co NN OO U1 A~ W

9
1/24/24

int n = 100;
int numIterations = 0;
for (int 1=0; i<n; i++) {
for (int j=0; j<i; j++) {
numIterations += 1; humIterations: 4950
} h*(n-1)/2): 4950

CompSci 201, Spring 2024, ArrayList 30

-xperiment to verity hypothesis

Live Coding é

ArraylList add (to end) is

(amortized) efficient

According to the Java 17 APl documentation:
"The add operation runs in amortized constant
time...” — What does that mean?

« With geometric growth (e.g., double size of
Array whenever out of space): Need =~ 2N
copies to add N elements to ArraylList.

* The average number of copies per add is thus
% = 2, a constant that does not depend on N.

ArraylList add to the front is not
efficient

add

public void add(int index,

Java 17 APl documentation of
E element)

add

Inserts the specified element at the specified position in this list. Shifts the
element currently at that position (if any) and any subsequent elements to
the right (adds one to their indices).

Always requires shifting the entire Array, even if
there is space available.

Array representing List

23
T~ 15 12

1/24/24 CompSci 201, Spring 2024, ArrayList 33

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)

ArraylList contains revisited

contains loops through the Array calling
.equals() at each step. May check every
element!

list.contains(33)

| | | 33.equals(33)
15 12 27 33 return true
15.equals(33) ‘
False, continue

12.equals(33) 21.equals(33)
false, continue false, continue

1/24/24 CompSci 201, Spring 2024, ArrayList 34

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Daytime Office Hours
	Slide 4: Reminder: Course Resources
	Slide 5: P0: duke.zoom.us
	Slide 6: P0: Enabling Cloud Recordings
	Slide 7: P0: Submitting to Gradescope
	Slide 8: OOP (Object-Oriented Programming) Wrapup
	Slide 9: Public vs. Private
	Slide 10: What about neither?
	Slide 11: .contains for List
	Slide 12: What is printed?
	Slide 13: Why use Classes/objects?
	Slide 14: Interfaces and Implementations
	Slide 15: Abstract Data Type (ADT)
	Slide 16: Java Interface
	Slide 17: The Java Collection Hierarchy
	Slide 18: What is a collection?
	Slide 19: Interface vs. Implementation
	Slide 20: Multiple Implementations of the Same Interface
	Slide 21: Implementations must have all methods of the Interface
	Slide 22: ArrayList Implementation
	Slide 23: Algorithmic tradeoffs depend on the implementation
	Slide 24: How does ArrayList add work?
	Slide 25: DIY (do it yourself) ArrayList
	Slide 27: How efficient is ArrayList add?
	Slide 28: ArrayList Growth
	Slide 29: ArrayList Growth and Algebra
	Slide 30: Math and Expectations in 201
	Slide 31: Experiment to verify hypothesis
	Slide 32: ArrayList add (to end) is (amortized) efficient
	Slide 33: ArrayList add to the front is not efficient
	Slide 34: ArrayList contains revisited

