
1/24/24 CompSci 201, Spring 2024, ArrayList 1

L4: Interfaces and 
Implementations, 

ArrayList
Alex Steiger

CompSci 201: Spring 2024

1/24/24



Logistics, Coming up

• Today, Wednesday, 1/24
• APT 1 due

• This Friday, 1/26
• Discussion 2: APTs, Sets, Strings, Git

• Next Monday 1/29
• Project 0: Person201 due (warmup project)

• Next Wednesday 1/31
• APT 2 due

1/24/24 CompSci 201, Spring 2024, ArrayList 2



Daytime Office Hours

• Mondays 10am-12pm with Mark
• LSRC D309

• Tuesdays 1-3pm with Eamon
• LSRC D309

• Thursdays 10-11am, 3-4pm with Alex
• LSRC D344 and Zoom

1/24/24 CompSci 201, Spring 2024, ArrayList 3



Reminder: Course Resources

• Getting Help

• zyBook→

• Java4Python

1/24/24 CompSci 201, Spring 2024, ArrayList 4

https://sites.duke.edu/compsci_201_001_sp24/getting-help/
https://runestone.academy/ns/books/published/java4python/index.html


P0: duke.zoom.us

1/24/24 CompSci 201, Spring 2024, ArrayList 5

http://duke.zoom.us/


P0: Enabling Cloud Recordings

1/24/24 CompSci 201, Spring 2024, ArrayList 6



P0: Submitting to Gradescope

1/24/24 CompSci 201, Spring 2024, ArrayList 7



OOP (Object-Oriented 
Programming) Wrapup

1/24/24 CompSci 201, Spring 2024, ArrayList 8



Public vs. Private

1/24/24 CompSci 201, Spring 2024, ArrayList 9

Can access this public 
instance variable

Cannot access this private 
instance variable

• Public – Can be 
accessed by code 
outside of the class.

• Private – Can only be 
accessed by code 
inside of the class.



What about neither?

• Public – Can be 
accessed by code 
outside of the class.

• Private – Can only be 
accessed by code 
inside of the class.

1/24/24 CompSci 201, Spring 2024, ArrayList 10

• No modifier – Can be 
accessed by code in 
the same package.

• Almost the same as 
Public for 201 code

• Use Public/Private!



.contains for List

1/24/24 CompSci 201, Spring 2024, ArrayList 11



What is printed?

1/24/24 CompSci 201, Spring 2024, ArrayList 12

Blobs are equal if they 
have the same shape 

(and any colors)
Try adding a Blob of 

every color-shape 
combination

3



Why use Classes/objects?

• Because you must in Java

• Formal specification for complex data 
structures

• Convenience and ease of correct programming

• Composition, Interfaces, & Implementations, 
Extending & Inheritance – More later!

It’s ok to not be fully “convinced” yet. But OOP has 
proven itself to be a powerful paradigm for 
designing complex, scalable software.

1/24/24 CompSci 201, Spring 2024, ArrayList 13



Interfaces and 
Implementations

1/24/24 CompSci 201, Spring 2024, ArrayList 14



Abstract Data Type (ADT)

• ADT specifies what a data structure does 
(functionality) but not how it does it 
(implementation).

• API (Application Program Interface) perspective: 
What methods can I call on these objects, what 
inputs do they take, what outputs do they return?

• For example, an abstract List should…
• Keep values in an order
• Be able to add new values, grow
• Be able to get the first value, or the last, etc.
• Be able to get the size of the list

1/24/24 CompSci 201, Spring 2024, ArrayList 15



Java Interface

• One primary way Java formalizes ADTs is with 
interfaces, which “specify a set of abstract 
methods that an implementing class must 
override and define.” – ZyBook

• 3 most important ADTs we study are all 
interfaces in Java!
• List: An ordered sequence of values

• Set: An unordered collection of unique
elements

• Map: A collection that associates keys and 
values

1/24/24 CompSci 201, Spring 2024, ArrayList 16



The Java Collection Hierarchy

Collection

List

ArrayList LinkedList

Set

HashSet TreeSet

Map

HashMap TreeMap

1/24/24 CompSci 201, Spring 2024, ArrayList 17

Interfaces

Implementing Classes



What is a collection?

• Java API data structures storing groups of objects 
likely based on the Collection interface.

• Lists, Sets, Maps, and more

• Useful static methods (such as sorting) in 
java.util.Collections (like Java.util.Arrays), see API 
documentation

1/24/24 CompSci 201, Spring 2024, ArrayList 18

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html


Interface vs. Implementation

Cannot instantiate an Interface object itself, but 
rather an implementation of that Interface

1/24/24 CompSci 201, Spring 2024, ArrayList 19

What is an implementation?
• Must override and implement all methods.
• Can have any instance variables.



Multiple Implementations of the 
Same Interface

1/24/24 CompSci 201, Spring 2024, ArrayList 20

ArrayList

LinkedList

Source: zyBook



Implementations must have all 
methods of the Interface

Doesn’t matter for correctness whether the 
argument Lists are ArrayList or LinkedList, 
because both implement .contains().

1/24/24 CompSci 201, Spring 2024, ArrayList 21

Method doesn’t even 
“know” how aList and 
bList are implemented.

Since retList is an ArrayList 
which implements List, it is a valid 

return.



ArrayList
Implementation

1/24/24 CompSci 201, Spring 2024, ArrayList 22



Algorithmic tradeoffs depend 
on the implementation

1/24/24 CompSci 201, Spring 2024, ArrayList 23

Often, we are interested in how the efficiency of operations 
on data structures depends on scale. For an ArrayList with 
N values how efficient is…

• get(). Direct lookup in an Array. “Constant time” – does 
not depend on size of the list.

• contains(). Loops through Array calling .equals() at 
each step. Takes longer as list grows.

• size(). Returns value of an instance variable tracking 
size, does not depend on size of the list.

• add(). Depends.



How does ArrayList add work?

Implements List (can grow) with Array (cannot 
grow). How? 

Keep an Array with extra space at the end. Two 
cases when adding to end of ArrayList:

1. Space left – add to first open position.

2. No space left – Create a new (larger) array, 
copy everything, then add to first open 
position.

1/24/24 CompSci 201, Spring 2024, ArrayList 24

Array representing List

15 12 21 15 12 21 7



DIY (do it yourself) ArrayList

1/24/24 CompSci 201, Spring 2024, ArrayList 25

Live Coding



How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1. Space left – One Array assignment statement, 
constant time, does not depend on list size.

2. No space left – Copy entire list! Takes N array 
assignments!

How often are we in the second slow case? 
Depends on how much we increase the Array size 
by in case 2.

1/24/24 CompSci 201, Spring 2024, ArrayList 27



ArrayList Growth

Is twice as large (geometric 
growth)

• Must copy at sizes:
• 1, 2, 4, 8, 16, 32, …

• Total values copied to 
add N values:
• 1+2+4+8+16+…N

Has 100 more positions 
(arithmetic growth)

• Must copy at sizes:
• 1, 101, 201, 301, …

• Total values copied to 
add N values:
• 1+101+201+301+…+N

1/24/24 CompSci 201, Spring 2024, ArrayList 28

Starting with Array length 1, if you keep creating a 
new Array that…

Algebra to our rescue!



ArrayList Growth and Algebra

Geometric growth

1 + 2 + 4 + ⋯ + 𝑁

= ෍

𝑖=0

≈log2 𝑁

2𝑖

≈ 2𝑁

Arithmetic growth

1 + 101 + 201 + ⋯ + 𝑁

= ෍

𝑖=0

≈𝑁/100

1 + 100𝑖

≈
𝑁2

200

1/24/24 CompSci 201, Spring 2024, ArrayList 29

Arithmetic series formula:

෍

𝑖=1

𝑛

𝑎𝑖 =
𝑛

2
𝑎1 + 𝑎𝑛

Geometric series formula:

෍

𝑖=0

𝑛

𝑎 𝑟𝑖 = 𝑎(
1 − 𝑟𝑛+1

1 − 𝑟
)



Math and Expectations in 201

• Do not expect you to formally derive closed 
form expressions / give proofs.

• Do expect you to recognize:
• Geometric growth: 1 + 2 + 4 + ⋯ + 𝑁 is linear, ≈ 2𝑁.

• Arithmetic growth: 1 + 101 + 201 + ⋯ + 𝑁 is quadratic, ≈
𝑁2

200
.

• Patterns like these show up again and again!

1/24/24 CompSci 201, Spring 2024, ArrayList 30



Experiment to verify hypothesis

1/24/24 CompSci 201, Spring 2024, ArrayList 31

Live Coding



ArrayList add (to end) is 
(amortized) efficient

According to the Java 17 API documentation: 
“The add operation runs in amortized constant 
time…” – What does that mean?

• With geometric growth (e.g., double size of 
Array whenever out of space): Need ≈ 2𝑁
copies to add 𝑁 elements to ArrayList.

• The average number of copies per add is thus 
2𝑁

𝑁
= 2, a constant that does not depend on 𝑁.

1/24/24 CompSci 201, Spring 2024, ArrayList 32



ArrayList add to the front is not 
efficient

1/24/24 CompSci 201, Spring 2024, ArrayList 33

Java 17 API documentation of 
add

Array representing List

15 12

Always requires shifting the entire Array, even if 
there is space available.

23

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)


ArrayList contains revisited

contains loops through the Array calling 
.equals() at each step. May check every 
element!

1/24/24 CompSci 201, Spring 2024, ArrayList 34

15 12 21 33

list.contains(33)

15.equals(33)
False, continue

12.equals(33)
false, continue

21.equals(33)
false, continue

33.equals(33)
return true


	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Daytime Office Hours
	Slide 4: Reminder: Course Resources
	Slide 5: P0: duke.zoom.us
	Slide 6: P0: Enabling Cloud Recordings
	Slide 7: P0: Submitting to Gradescope
	Slide 8: OOP (Object-Oriented Programming) Wrapup
	Slide 9: Public vs. Private
	Slide 10: What about neither?
	Slide 11: .contains for List
	Slide 12: What is printed?
	Slide 13: Why use Classes/objects?
	Slide 14: Interfaces and Implementations
	Slide 15: Abstract Data Type (ADT)
	Slide 16: Java Interface
	Slide 17: The Java Collection Hierarchy
	Slide 18: What is a collection?
	Slide 19: Interface vs. Implementation
	Slide 20: Multiple Implementations of the Same Interface
	Slide 21: Implementations must have all methods of the Interface
	Slide 22: ArrayList Implementation
	Slide 23: Algorithmic tradeoffs depend on the implementation
	Slide 24: How does ArrayList add work?
	Slide 25: DIY (do it yourself) ArrayList
	Slide 27: How efficient is ArrayList add?
	Slide 28: ArrayList Growth
	Slide 29: ArrayList Growth and Algebra
	Slide 30: Math and Expectations in 201
	Slide 31: Experiment to verify hypothesis
	Slide 32: ArrayList add (to end) is (amortized) efficient
	Slide 33: ArrayList add to the front is not efficient
	Slide 34: ArrayList contains revisited

