L4: Interfaces and
Implementations,
ArraylList

Alex Steiger
CompSci 201: Spring 2024
1/24/24

Logistics, Coming up

* Today, Wednesday, 1/24
* APT 1 due

« This Friday, 1/26
« Discussion 2: APTs, Sets, Strings, Git

* Next Monday 1/29

« Project 0: Person201 due (warmup project)

* Next Wednesday 1/31
« APT 2 due

Daytime Office Hours

» Mondays 10am-12pm with Mark
+ LSRC D309

* Tuesdays 1-3pm with Eamon
+ LSRC D309

* Thursdays 10-1Tam, 3-4pm with Alex
« LSRC D344 and Zoom

1/24/2024

1/24/2024

Reminder: Course Resources

* Getting Help
* zyBook >

* Java4Python

4
5
PO: Enabling Cloud Recordings

General Mesting AlCompanion Recording Calendar Audio Conferencing ZoomApps V.

https://sites.duke.edu/compsci_201_001_sp24/getting-help/
https://runestone.academy/ns/books/published/java4python/index.html
http://duke.zoom.us/

PO: Submitting to Gradescope

COMPSCI 201 Spring 2024

Course 10: 693578 0 Mo Published Grades

Dascription

Edit your course description an the Course Settings page.
Things To Da

© Review and publish grades for B0: P

o that you're all done grading

Active Assignments Released Due (EST)» #Submissions % Graded # Published

————
PO: Person 201 (Cade) JaN 22, 2024 500 AM JAN 25, 2024 11:59 PM 5

p

Late Due Date: FEB 5, 2024 11:59 PM Took
—————
PD: Person 201 O
{Analysis) JAN 22, 2024 200 AM JAN 29, 2024 11:59 PM 2 o ()
Analysis Late Due Date: FEB 5, 2024 11:59 PM
. —
JAN 22,2024 100 PN JAN 26, 2024 11:53 M g -~ O

Late Due Date: JAN 28, 2024 11:59 P

OOP (Object-Oriented
Programming) Wrapup

Public vs. Private

1/24/2024

P Recard java Record
* PUbIIC Can be 1 public class Record {
accessed by code 2 public String displayName;
outside of the class. 3 private int uniqueld;
4
* Private — Can only be s public Record(String name, int id) {
accessed by code °© displaytiame = name;
N . 7 uniquell = id;
inside of the class.)
9
1 public class PublicPrivate {
Run | Debug Can access this public
2 public static void main (String[] args) { instance variable
3 Record rec = new Record("Fain", 12345);
4 System.out.printlnCrec.displayNane);
H System.out.printlnCrec. f
& } Cannot access this private
[instance variable

What about neither?

« Public = Can be Record java > %3 Record
public class Record {
accelzsedfb%/ Co|de public String displayName;
outside of the class.

private int uniquelD;

* Private — Can only be
accessed by code
inside of the class.

public Record(String name, int id) {
displayName = name;
uniquelD = id;

Wo N O e W e

}

J ’ » No modifier — Can be

1 class Record { .

2 String displayName; accessed by code in

’ int uniqueld; the same package.

5 Record(String name, int id) { e AlmOSt the same as

& displayl = : .

7 wntauet0 - gy Public for 207 code

8 ¥ . .

0} « Use Public/Private!

10

.contains for List

contains

boolean contains(Object o)

Returns true if this list contains the specified element. More
formally, returns true if and only if this list contains at least one
element e such that {o==null ? e==null : o.equals(e)).

Specified by:
contains in interface Collection<E>

Parameters:

o - element whose presence in this list is to be tested

Returns:
true if this list contains the specified element

11

What is printed?

1 public class 8lob { 1 import java.utilArroylist;
2 public String <olor; 2
3 public String shape; 3 public class BlobDriver {
4 public Blob(String color, String shape) { Run | Debu
s this.color = color; 4 public static void main(String(] args) {
6 this.shape = shape; s new Arraylisto();
7 3} 6 "white", "blue”, "green"};
8 7 » “oblong”, “square’};
9 @0verride e for (String color : colors) {
10 public boolean equals(Object obj) { 9 for (String shape : shapes) {
1 Blob other = (Blob) obj; - 1 Blob newBlob = new Blob(color, shape);
12 i (other.shape.equalsCthis.shape)) { 1 if (1 myBlobs. contains(nenBlob)) {
13 return true; 12 myBlobs .add(newBlob);
14 13 3
15 return false; 14 }
16 H 15 y
7 16 System. out..printin(myBlobs.size(3);
:g ¢ Blobs are equal if they 17 y " ~
have the same shape w0y Try adding a Blob of

every color-shape
combination

(and any colors)

12

1/24/2024

13

14

15

Why use Classes/objects?

* Because you must in Java

« Formal specification for complex data
structures

+ Convenience and ease of correct programming

« Composition, Interfaces, & Implementations,
Extending & Inheritance — More later!

It's ok to not be fully “convinced” yet. But OOP has
proven itself to be a powerful paradigm for
designing complex, scalable software.

Interfaces and
Implementations

Abstract Data Type (ADT)

» ADT specifies what a data structure does
functionality) but not how it does it
implementation).

* API (Application Program Interface) perspective:
What methods can | call on these objects, what
inputs do they take, what outputs do they return?

» For example, an abstract List should...
« Keep values in an order
* Be able to add new values, grow
 Be able to get the first value, or the last, etc.
 Be able to get the size of the list

1/24/2024

Java Interface

» One primary way Java formalizes ADTs is with
interfaces, which “specify a set of abstract
methods that an implementing class must
override and define." — ZyBook

* 3 most important ADTs we study are all
interfaces in Java!

« List: An ordered sequence of values

« Set: An unordered collection of unique
elements

* Map: A collection that associates keys and
values

16

The Java Collection Hierarchy

I
Interfaces ’g‘ Map
LinkedList HashMap TreeMap

Implementing Classes

17

What is a collection?

public interface Collection<E>
extends Iterable<E>

The root interface in the collection hierarchy. A collection represents a group of objects
known as its elements. Some collections allow duplicate elements and others do not
Some are ordered and others unordered. The JDK does not provide any direct
implementations of this interface: it provides implementations of more specific
subinterfaces like Set and List. This interface is typically used to pass collections
around and manipulate them where maximum generality is desired.

« Java API data structures storing groups of objects
likely based on the Collection interface.

« Lists, Sets, Maps, and more

« Useful static methods (such as sorting) in
java.util.Collections (like Java.util. Arrays), see API
documentation

18

1/24/2024

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html

Interface vs. Implementation

Cannot instantiate an Interface object itself, but
rather an implementation of that Interface
1 public class InterfaceExomple {
. List cannot be resolved to a type
2 public static void main(String[view Problem Quick Fix... (%.)
What is an implementation?
* Must override and implement all methods.

« Can have any instance variables.

@ DivListjava > % DIVList 6 public class DIVList implements List {
1 Mport java.util.list;
2 publlic class DIYList implements List { & !’U;{” de o
ublic int size
2 ¥ o " 7000, Autc-generaked method stub
1 return @;
s 2 ¥

19

Multiple Implementations of the
Same Interface

agesList (List ADT)
agesList = new List . -
Append(agesList, 55)

Append(agesList, 88) @
Append(agesList, 66)
[Print(agesList)

Print result: 55, 88, 66

Array-based implementation Linked list-based implementation
T3
length: 3

ﬁ length: 3

Source: zyBook

20

Implementations must have all
methods of the Interface

Doesn't matter for correctness whether the
argument Lists are ArrayList or LinkedList,
because both implement .contains().

17 I public static List<String> inBothLists(lList<String> alist,

18 List<String> bList) {

19 List<String> retlist = new Arraylist<();

20 for (String s : alist) {

21 if (blList.contains(s)) { Method doesn't even
22 retlist.add(s); “know” how aList and
2 1 bList are implemented.
24 }

25 return retlist;

26

Since retList is an ArrayList
which implements List, it is a valid
return

21

1/24/2024

22

23

24

Arraylist
Implementation

Algorithmic tradeoffs depend

on the implementation

Often, we are interested in how the efficiency of operations
on data structures depends on scale. For an ArrayList with
N values how efficient is...

.

get(). Direct lookup in an Array. “Constant time” — does
not depend on size of the list.

contains(). Loops through Array calling .equals() at
each step. Takes longer as list grows.

size(). Returns value of an instance variable tracking
size, does not depend on size of the list.

add(). Depends.

How does ArraylList add work?

Implements List (can grow) with Array (cannot
grow). How?

Keep an Array with extra space at the end. Two
cases when adding to end of ArrayList:

1.
2.

Space left — add to first open position.

No space left — Create a new (larger) array,
copy everything, then add to first open
position.

Array representing List

— 522 1512|217

1/24/2024

25

27

28

DIY (do it yourself) ArrayList

Live Coding (%)

How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1. Space left — One Array assignment statement,
constant time, does not depend on list size.

2. No space left — Copy entire list! Takes N array
assignments!

How often are we in the second slow case?
Depends on how much we increase the Array size
by in case 2.

ArrayList Growth

Starting with Array length 1, if you keep creating a
new Array that...

Is twice as large (geometric Has 100 more positions

growth) (arithmetic growth)
» Must copy at sizes: » Must copy at sizes:
©1,2,4,816,32, .. +1,101,201,301, ..
* Total values copied to « Total values copied to
add N values: add N values:
o 14+2+4+8+16+..N * 1+101+201+301+...+N

Algebra to our rescue!

1/24/2024

ArrayList Growth and Algebra

Geometric growth Arithmetic growth
1+24+44+-+N 14+101+201+--+N

=~log, N ~N/100
- Z 2 = Z 1+ 100i
i=0 i=0 NZ
~ 200

Geometric series formula: Arithmetic series formula:

1 — ol

Z a; = (;) (a; + ay)

=

n
i
Zar a l—r)

i=0

29

Math and Expectations in 201

» Do not expect you to formally derive closed
form expressions / give proofs.

* Do expect you to recognize:
+ Geometric growth: 1+ 2 + 4 4 ---+ N is linear, ~ 2N.
« Arithmetic growth: 1 + 101 + 201 + --- + N is quadratic, =
N2

200

* Patterns like these show up again and again!

int n = 100;
int nunIterations = @;
for (int i=0; i<n; 1++) {
for (int j=8; j<i; j++) {
numIterations += 1; numIterations: 4950
} n*(n-1)/2): 4950
}

S wmNenew

30

Experiment to verify hypothesis

Live Coding (%

31

1/24/2024

10

ArraylList add (to end)is
(amortized) efficient

According to the Java 17 API documentation:
“The add operation runs in amortized constant
time.." — What does that mean?

« With geometric growth (e.g., double size of
Array whenever out of space): Need =~ 2N
copies to add N elements to ArrayList.

* The average number of copies per add is thus
% = 2, a constant that does not depend on N.

32

ArrayList add to the front is not
efficient

add

public void add(int index,

Java 17 API documentation of
E element)

add
Inserts the specified element at the specified position in this list. Shifts the
element currently at that position (if any) and any subsequent elements to
the right (adds one to their indices)

Always requires shifting the entire Array, even if
there is space available.

Array representing List

1512

33

ArraylList contains revisited

contains loops through the Array calling

.equals() at each step. May check every
element!

list.contains(33)
15(12121| 33 return true

15.equals(33)

False, continue
12.equals(33) 21.equals(33)
false, continue false, continue

34

1/24/2024

11

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Daytime Office Hours
	Slide 4: Reminder: Course Resources
	Slide 5: P0: duke.zoom.us
	Slide 6: P0: Enabling Cloud Recordings
	Slide 7: P0: Submitting to Gradescope
	Slide 8: OOP (Object-Oriented Programming) Wrapup
	Slide 9: Public vs. Private
	Slide 10: What about neither?
	Slide 11: .contains for List
	Slide 12: What is printed?
	Slide 13: Why use Classes/objects?
	Slide 14: Interfaces and Implementations
	Slide 15: Abstract Data Type (ADT)
	Slide 16: Java Interface
	Slide 17: The Java Collection Hierarchy
	Slide 18: What is a collection?
	Slide 19: Interface vs. Implementation
	Slide 20: Multiple Implementations of the Same Interface
	Slide 21: Implementations must have all methods of the Interface
	Slide 22: ArrayList Implementation
	Slide 23: Algorithmic tradeoffs depend on the implementation
	Slide 24: How does ArrayList add work?
	Slide 25: DIY (do it yourself) ArrayList
	Slide 27: How efficient is ArrayList add?
	Slide 28: ArrayList Growth
	Slide 29: ArrayList Growth and Algebra
	Slide 30: Math and Expectations in 201
	Slide 31: Experiment to verify hypothesis
	Slide 32: ArrayList add (to end) is (amortized) efficient
	Slide 33: ArrayList add to the front is not efficient
	Slide 34: ArrayList contains revisited

