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L5: Sets and Maps
Alex Steiger

CompSci 201: Spring 2024

1/29/24

Announcements, Coming up
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• Today, Monday 1/29
• Project 0: Person201 due

• This Wednesday, 1/31
• APT2 due

• Next Monday, 2/5
• Project 1: NBody due (future projects will be 2 week)

Wrapping up ArrayList: 
Analyzing Efficiency
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Algorithmic tradeoffs depend 
on the implementation
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Often, we are interested in how the efficiency of operations 
on data structures depends on scale. For an ArrayList with 
N values how efficient is…

• get(). Direct lookup in an Array. “Constant time” – does 
not depend on size of the list.

• contains(). Loops through Array calling .equals() at 
each element. Takes longer as list grows.

• size(). Returns value of an instance variable tracking 
size, does not depend on size of the list.

• add(). Depends.

How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1. Space left – One Array assignment statement, 
constant time, does not depend on list size.

2. No space left – Copy entire list! Takes N array 
assignments!

How often are we in the second slow case? 
Depends on how much we increase the Array size 
by in case 2.
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Code Recap + WOTO
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Live Coding
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ArrayList Growth

Is twice as large
(geometric growth)

• Must copy at sizes:
• 1, 2, 4, 8, 16, 32, …

• Total values copied 
looks like:
• 1+2+4+8+…+(N/4)+(N/2)

Has 1 more position 
(arithmetic growth)

• Must copy at sizes:
• 1, 2, 3, 4, …

• Total values copied 
looks like:
• 1+2+3+…+(N-2)+(N-1)
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Starting with a length 1 Array, if you add N 
elements one at a time and (when full) create a 
new Array that…

Algebra to our rescue!

ArrayList Growth and Algebra

Geometric growth

1 + 2 + 4 +⋯+ (𝑁/2)

= ෍

𝑖=0

log2 𝑁−1

2𝑖

= 𝑁 − 1

Arithmetic growth

1 + 2 + 3 +⋯+ (𝑁 − 1)

= ෍

𝑖=1

𝑁−1

𝑖

= 𝑁(𝑁 − 1)/2
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Arithmetic series formula:

෍
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𝑛

𝑎𝑖 =
𝑛

2
𝑎1 + 𝑎𝑛

Geometric series formula:

෍

𝑖=0

𝑛

𝑟𝑖 =
1 − 𝑟𝑛+1

1 − 𝑟

Math and Expectations in 201

• Do not expect you to formally derive closed 
form expressions / give proofs.

• Do expect you to recognize:
• 1 + 2 + 4 +⋯+𝑁 is linear, grows like ≈ 𝑁.

• 1 + 2 + 3 +⋯+𝑁 is quadratic, grows like ≈ 𝑁2.

• Patterns like these show up again and again!
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Will make “like” more formal 
with asymptotic analysis
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Experiment to verify hypothesis
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Live Coding

ArrayList add (to end) is 
(amortized) efficient

• According to the Java 17 API documentation: 
“The add operation runs in amortized constant 
time…”
• What does that mean?

• With geometric growth (e.g., grow array by 
doubling size):
• Only need a linear number of copies (i.e., ∝ 𝑁 copies) 

to add 𝑁 elements to ArrayList.

• The average number of copies per add is thus ∝
𝑁

𝑁
=

1, a constant that does not depend on 𝑁.
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ArrayList add to the front is not 
efficient
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Java 17 API documentation of 
add

Array representing List

15 12

Always requires shifting the entire Array, even if 
there is space available.
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
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Sets

1/29/24 CompSci 201,Spring 2024, Sets Maps 14

Set ADT 
Review

• Stores UNIQUE elements

• Check if element in Set (using .contains())

• Add element to set (using .add())

• Returns false if already there

• Remove element (with .remove())

• Not guaranteed to store them in the order added
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Java API documentation

Set FAQs

1. How do I loop over a Set?

2. How do I convert between lists and sets?
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Enhanced for 
loop

addAll() method 
convenient, same as 

looping and adding one at 
a time
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https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Set.html
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HashSet implementation of Set is 
very efficient
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Java API documentation

Constant time = does not 
depend on the number of 
values stored in the Set.

Under assumptions 
we will discuss next 

time

Count Unique Words?
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For each word, 
constant time 

operation. “Linear 
complexity.”

For each word, must 
check all the words so 

far. “Quadratic 
complexity.”

TreeSet stores sorted

Two important implementations of Set interface:

• HashSet – Very efficient add, contains

• TreeSet – Nearly as efficient, keeps values 
sorted by their “natural ordering”
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Prints all unique 
characters in order.
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https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html
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HashSet and TreeSet
Implementations
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HashSet and HashMap both 
implemented with a hash 
table data structure, will 

discuss next time.

TreeSet and TreeMap both 
implemented using a special 

kind of binary tree, will 
discuss later in the course.

Maps
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Map pairs keys with values
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• Like an address book, lookup the value 
(address) of a key (person). Like a dictionary in 
Python.

• Map is an interface, must have methods like: 
• put(k, v): Associate value v with key k

• get(k): Return the value associated with key k 

• containsKey(k): Return true if key k is in the Map

Keys Values

Bob 101 E. Main St.

Naomi 200 Broadway

Stavros 121 Durham Ave.
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Implementations of Map

Two major implementations:

• HashMap: Very efficient put, get, containsKey

• TreeMap: Nearly as efficient, keeps keys sorted
by their “natural ordering”
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Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to 
implement this Map

Sorted by keys due 
to TreeMap

Check before you get

If you call .get(key) on a key not in the map, 
returns null, can cause program to crash.

Instead, check first with .containsKey().
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Adding “default” values

Often want a “default” value associated with new 
keys (examples: 0, empty list, etc.). Two options:

• .putIfAbsent(key, val)

• Check if does not contain key before put
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Updating maps

Immutable values:

• .get() returns a copy 
of the value. 

• Must use .put() again 
to update.

Mutable values (e.g. collections)

• .get() returns 
reference to collection.

• Update the collection 
directly. 
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Counting with a Map

In this example we count how many of each 
character occur in message.
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Comes in order 
because using 

TreeMap

Check if we have not 
seen c yet

Else get current value 
and increase

Problem-Solving with 
Sets and Maps
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Word Pattern Problem

Live Coding

https://leetcode.com/problems/word-
pattern/submissions/886368133/
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https://leetcode.com/problems/word-pattern/submissions/886368133/
https://leetcode.com/problems/word-pattern/submissions/886368133/
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