
1/29/2024

1

1/29/24 CompSci 201,Spring 2024, Sets Maps 1

L5: Sets and Maps
Alex Steiger

CompSci 201: Spring 2024

1/29/24

Announcements, Coming up

1/29/24 CompSci 201,Spring 2024, Sets Maps 2

• Today, Monday 1/29
• Project 0: Person201 due

• This Wednesday, 1/31
• APT2 due

• Next Monday, 2/5
• Project 1: NBody due (future projects will be 2 week)

Wrapping up ArrayList:
Analyzing Efficiency

1/29/24 CompSci 201,Spring 2024, Sets Maps 4

1

2

4

1/29/2024

2

Algorithmic tradeoffs depend
on the implementation

1/29/24 CompSci 201,Spring 2024, Sets Maps 5

Often, we are interested in how the efficiency of operations
on data structures depends on scale. For an ArrayList with
N values how efficient is…

• get(). Direct lookup in an Array. “Constant time” – does
not depend on size of the list.

• contains(). Loops through Array calling .equals() at
each element. Takes longer as list grows.

• size(). Returns value of an instance variable tracking
size, does not depend on size of the list.

• add(). Depends.

How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1. Space left – One Array assignment statement,
constant time, does not depend on list size.

2. No space left – Copy entire list! Takes N array
assignments!

How often are we in the second slow case?
Depends on how much we increase the Array size
by in case 2.

1/29/24 CompSci 201,Spring 2024, Sets Maps 6

Code Recap + WOTO

1/29/24 CompSci 201,Spring 2024, Sets Maps 7

Live Coding

5

6

7

1/29/2024

3

ArrayList Growth

Is twice as large
(geometric growth)

• Must copy at sizes:
• 1, 2, 4, 8, 16, 32, …

• Total values copied
looks like:
• 1+2+4+8+…+(N/4)+(N/2)

Has 1 more position
(arithmetic growth)

• Must copy at sizes:
• 1, 2, 3, 4, …

• Total values copied
looks like:
• 1+2+3+…+(N-2)+(N-1)

1/29/24 CompSci 201,Spring 2024, Sets Maps 8

Starting with a length 1 Array, if you add N
elements one at a time and (when full) create a
new Array that…

Algebra to our rescue!

ArrayList Growth and Algebra

Geometric growth

1 + 2 + 4 +⋯+ (𝑁/2)

= ෍

𝑖=0

log2 𝑁−1

2𝑖

= 𝑁 − 1

Arithmetic growth

1 + 2 + 3 +⋯+ (𝑁 − 1)

= ෍

𝑖=1

𝑁−1

𝑖

= 𝑁(𝑁 − 1)/2

1/29/24 CompSci 201,Spring 2024, Sets Maps 9

Arithmetic series formula:

෍

𝑖=1

𝑛

𝑎𝑖 =
𝑛

2
𝑎1 + 𝑎𝑛

Geometric series formula:

෍

𝑖=0

𝑛

𝑟𝑖 =
1 − 𝑟𝑛+1

1 − 𝑟

Math and Expectations in 201

• Do not expect you to formally derive closed
form expressions / give proofs.

• Do expect you to recognize:
• 1 + 2 + 4 +⋯+𝑁 is linear, grows like ≈ 𝑁.

• 1 + 2 + 3 +⋯+𝑁 is quadratic, grows like ≈ 𝑁2.

• Patterns like these show up again and again!

1/29/24 CompSci 201,Spring 2024, Sets Maps 10

Will make “like” more formal
with asymptotic analysis

8

9

10

1/29/2024

4

Experiment to verify hypothesis

1/29/24 CompSci 201,Spring 2024, Sets Maps 11

Live Coding

ArrayList add (to end) is
(amortized) efficient

• According to the Java 17 API documentation:
“The add operation runs in amortized constant
time…”
• What does that mean?

• With geometric growth (e.g., grow array by
doubling size):
• Only need a linear number of copies (i.e., ∝ 𝑁 copies)

to add 𝑁 elements to ArrayList.

• The average number of copies per add is thus ∝
𝑁

𝑁
=

1, a constant that does not depend on 𝑁.

1/29/24 CompSci 201,Spring 2024, Sets Maps 12

ArrayList add to the front is not
efficient

1/29/24 CompSci 201,Spring 2024, Sets Maps 13

Java 17 API documentation of
add

Array representing List

15 12

Always requires shifting the entire Array, even if
there is space available.

23

11

12

13

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)

1/29/2024

5

Sets

1/29/24 CompSci 201,Spring 2024, Sets Maps 14

Set ADT
Review

• Stores UNIQUE elements

• Check if element in Set (using .contains())

• Add element to set (using .add())

• Returns false if already there

• Remove element (with .remove())

• Not guaranteed to store them in the order added

1/29/24 CompSci 201,Spring 2024, Sets Maps 15

Java API documentation

Set FAQs

1. How do I loop over a Set?

2. How do I convert between lists and sets?

1/29/24 CompSci 201,Spring 2024, Sets Maps 16

Enhanced for
loop

addAll() method
convenient, same as

looping and adding one at
a time

14

15

16

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Set.html

1/29/2024

6

HashSet implementation of Set is
very efficient

1/29/24 CompSci 201,Spring 2024, Sets Maps 17

Java API documentation

Constant time = does not
depend on the number of
values stored in the Set.

Under assumptions
we will discuss next

time

Count Unique Words?

1/29/24 CompSci 201,Spring 2024, Sets Maps 18

For each word,
constant time

operation. “Linear
complexity.”

For each word, must
check all the words so

far. “Quadratic
complexity.”

TreeSet stores sorted

Two important implementations of Set interface:

• HashSet – Very efficient add, contains

• TreeSet – Nearly as efficient, keeps values
sorted by their “natural ordering”

1/29/24 CompSci 201,Spring 2024, Sets Maps 19

Prints all unique
characters in order.

17

18

19

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

1/29/2024

7

HashSet and TreeSet
Implementations

1/29/24 CompSci 201,Spring 2024, Sets Maps 20

HashSet and HashMap both
implemented with a hash
table data structure, will

discuss next time.

TreeSet and TreeMap both
implemented using a special

kind of binary tree, will
discuss later in the course.

Maps

1/29/24 CompSci 201,Spring 2024, Sets Maps 22

Map pairs keys with values

1/29/24 CompSci 201,Spring 2024, Sets Maps 23

• Like an address book, lookup the value
(address) of a key (person). Like a dictionary in
Python.

• Map is an interface, must have methods like:
• put(k, v): Associate value v with key k

• get(k): Return the value associated with key k

• containsKey(k): Return true if key k is in the Map

Keys Values

Bob 101 E. Main St.

Naomi 200 Broadway

Stavros 121 Durham Ave.

20

22

23

1/29/2024

8

Implementations of Map

Two major implementations:

• HashMap: Very efficient put, get, containsKey

• TreeMap: Nearly as efficient, keeps keys sorted
by their “natural ordering”

1/29/24 CompSci 201,Spring 2024, Sets Maps 24

Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to
implement this Map

Sorted by keys due
to TreeMap

Check before you get

If you call .get(key) on a key not in the map,
returns null, can cause program to crash.

Instead, check first with .containsKey().

1/29/24 CompSci 201,Spring 2024, Sets Maps 25

Adding “default” values

Often want a “default” value associated with new
keys (examples: 0, empty list, etc.). Two options:

• .putIfAbsent(key, val)

• Check if does not contain key before put

1/29/24 CompSci 201,Spring 2024, Sets Maps 26

24

25

26

1/29/2024

9

Updating maps

Immutable values:

• .get() returns a copy
of the value.

• Must use .put() again
to update.

Mutable values (e.g. collections)

• .get() returns
reference to collection.

• Update the collection
directly.

1/29/24 CompSci 201,Spring 2024, Sets Maps 27

Counting with a Map

In this example we count how many of each
character occur in message.

1/29/24 CompSci 201,Spring 2024, Sets Maps 28

Comes in order
because using

TreeMap

Check if we have not
seen c yet

Else get current value
and increase

Problem-Solving with
Sets and Maps

1/29/24 CompSci 201,Spring 2024, Sets Maps 29

27

28

29

1/29/2024

10

Word Pattern Problem

Live Coding

https://leetcode.com/problems/word-
pattern/submissions/886368133/

1/29/24 CompSci 201,Spring 2024, Sets Maps 30

30

https://leetcode.com/problems/word-pattern/submissions/886368133/
https://leetcode.com/problems/word-pattern/submissions/886368133/

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 4: Wrapping up ArrayList: Analyzing Efficiency
	Slide 5: Algorithmic tradeoffs depend on the implementation
	Slide 6: How efficient is ArrayList add?
	Slide 7: Code Recap + WOTO
	Slide 8: ArrayList Growth
	Slide 9: ArrayList Growth and Algebra
	Slide 10: Math and Expectations in 201
	Slide 11: Experiment to verify hypothesis
	Slide 12: ArrayList add (to end) is (amortized) efficient
	Slide 13: ArrayList add to the front is not efficient
	Slide 14: Sets
	Slide 15: Set ADT Review
	Slide 16: Set FAQs
	Slide 17: HashSet implementation of Set is very efficient
	Slide 18: Count Unique Words?
	Slide 19: TreeSet stores sorted
	Slide 20: HashSet and TreeSet Implementations
	Slide 22: Maps
	Slide 23: Map pairs keys with values
	Slide 24: Implementations of Map
	Slide 25: Check before you get
	Slide 26: Adding “default” values
	Slide 27: Updating maps
	Slide 28: Counting with a Map
	Slide 29: Problem-Solving with Sets and Maps
	Slide 30: Word Pattern Problem

