1/29/2024

L5: Sets and Maps

Alex Steiger
CompSci 201: Spring 2024
1/29/24

Announcements, Coming up

* Today, Monday 1/29
« Project 0: Person201 due

* This Wednesday, 1/31
* APT2 due

* Next Monday, 2/5
« Project 1: NBody due (future projects will be 2 week)

Wrapping up ArrayList:
Analyzing Efficiency

Algorithmic tradeoffs depend

on the implementation

Often, we are interested in how the efficiency of operations
on data structures depends on scale. For an ArrayList with
N values how efficient is...

.

get(). Direct lookup in an Array. “Constant time” — does
not depend on size of the list.

contains(). Loops through Array calling .equals() at
each element. Takes longer as list grows.

size(). Returns value of an instance variable tracking
size, does not depend on size of the list.

add(). Depends.

How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1.

Space left — One Array assignment statement,
constant time, does not depend on list size.
No space left — Copy entire list! Takes N array
assignments!

How often are we in the second slow case?
Depends on how much we increase the Array size
by in case 2.

Code Recap + WOTO

Live Coding (%

1/29/2024

1/29/2024

ArrayList Growth

Starting with a length 1 Array, if you add N
elements one at a time and (when full) create a
new Array that...

Is twice as large Has 1 more position
(geometric growth) (arithmetic growth)
» Must copy at sizes: » Must copy at sizes:
+1,2,4,816,32, .. © 1,234, .
* Total values copied * Total values copied
looks like: looks like:
o 14+2+4+8+. +(N/4)+(N/2) o 14243+ +(N-2)+(N-1)

Algebra to our rescuel!

ArrayList Growth and Algebra

Geometric growth Arithmetic growth
1+2+4+-+WIN/2)[1+2+43+-+WN-1)

logy, N—1 -1

= Z 2t :Zi

i=0

Geometric series formula: Arithmetic series formula:

1 —pntl e o
Z = 1—r Zan:(i)(ﬂf*ﬂn)
i=0 1

Math and Expectations in 201

» Do not expect you to formally derive closed

form expreSS|ons / glve proofs‘ Will make “like” more formal
* Do expect you to recogn]ze: with asymptotic analysis
* 142+4+ -4 Nislinear, grows like = N.
e 142+ 3+ -+ N is quadratic, grows like = N2.

« Patterns like these show up again and again!

3 int n = 100;
4 int numlterations = 0; X
for Cint i=8; i<n; i++) { numIterations: 49350
for Cint j=@; j<i; j+4) { n*(n-1)/2): 4950
nunlterations += 1;

[

10

Experiment to verify hypothesis

Live Coding (%)

11

ArraylList add (to end) is

(amortized) efficient

+ According to the Java 17 APl documentation:
“The add operation runs in amortized constant
time..."

* What does that mean?

« With geometric growth (e.g., grow array by
doubling size):
« Only need a linear number of copies (i.e., « N copies)
to add N elements to ArrayList.

» The average number of copies per add is thus o % =
1, a constant that does not depend on N.

12

ArrayList add to the frontis not
efficient

add

public void add(int index,

Java 17 API documentation of
E element)

add

Inserts the specified element at the specified position in this list. Shifts the
element currently at that position (if any) and any subsequent elements to
the right (adds one to their indices)

Always requires shifting the entire Array, even if
there is space available.

Array representing List

3
1512

13

1/29/2024

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html#add(int,E)

14

15

16

Sets

Set ADT g
ReVI ew A collection that contains no duplicate elements.
Java AP| documentation
» Stores UNIQUE elements
« Check if element in Set (using .contains())
» Add element to set (using .add())
* Returns false if already there
» Remove element (with . remove())
» Not guaranteed to store them in the order added

Set FAQs

jshell> mySet
mySet ==> [CS, 201]

Enhanced f
1. How do | loop over a Set? n1a‘ggle) -

jshell> for (String s : mySet) { System.out.println(s); }
&)
201

2. How do | convert between lists and sets?
jshell> List<String> mylist = new Arraylist<();
myList == []

addAll() method
convenient, same as

looping and adding one at

atime

jshell> mylList.addAl1(mySet);
$21 m=> true

Jshell> mylist
mylist ==> [CS, 201]

1/29/2024

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Set.html

HashSet implementation of Set is
very efficient

Constant time = does not
depend on the number of

public class HashSet<ex ; s
axtends AbstractSeteEs values stored in the Set
inplements Set<E=, Clonesble, Serializg

This class implements the Set interfaceg@®Xed by a hash table (actually a HashMap instance). It makes no
guaraniees as Lo the iteration ord ve sel; in particular, it does not guarantee that the order will remain
constant over time. This class p##mits the null element.

This class offers constant time performance for the basic operations (add, remove, contains and size),
assuming the hash function disperses the elements properly among the buckets. Iterating aver this set

e propartional to the sum of the HashSet instance's size (the number of elements) plus the
Recking HashMap instance (the number of buckets). Thus, it's very important not to set the
initial capacity too r the load factor too low) if iteration performance is important.

Java API documentation

Under assumptions
we will discuss next
time

17

Count Unigue Words?

public static int countWordsHashSet(String[] words) {
HashSet<String> mySet = new HashSet<>();
for (String w : words) {
mySet.add(w);

For each word,
constant time
operation. “Linear
complexity.”

}
return mySet.size();

}
public static int countWordsArraylList(String[] words) {
ArrayList<String> myList = new Arraylist<>();
for (String w : words) {
if (ImyList.contains(w)) {
myList.add(w);

For each word, must
check all the words so
far. “Quadratic
complexity.”

+

return myList.size();

CompSci 201,Spring 2024, Sets Maps

18

TreeSet stores sorted

Two important implementations of Set interface:
* HashSet — Very efficient add, contains

* TreeSet — Nearly as efficient, keeps values
sorted by their “natural ordering”

5 String message = "computer science is so much fun";

6 char[] messageCharArray = message.toCharArray();

7 TreeSet<Character> uniqueChars = new TreeSet<>();

8 for (char c : messageCharArray) {

9 uniqueChars.add(c);

10 }

11 System.out.printlnCuniqueChars); Prints all unique

characters in order.
[,c e f,h 1,mn, o0 p,r st u]

2024, Sets Maps

19

1/29/2024

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

HashSet and TreeSet
Implementations

HashSet and HashMap both
public class HashSet<E> implemented with a hash
extends AbstractSet<E> table data structure, will
implements Set<E>, Cloneable, Serializable

discuss next time.
This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as to the iteration order of the set; in particular, it does not guarantee that the order will
remain constant over time. This class permits the null element.

TreeSet and TreeMap both
implemented using a special

public class TreeSet<E> > ,
kind of binary tree, will

extends AbstractSet<E>

implements NavigableSet<E>, Cloneable, Serializable discuss later in the course.
A NavigableSet implementation based on a TreeMap. The elements g ®d using their natural
ordering, or by a Comparator provided at set creation time, depa - ich constructor is used

public class TreeMap<K,Vs>
extends AbstractMap<K,
implements Navigabla#®p<K,vs, Cloneable, Serializable

A Red-Black tree based NavigableMap implementation. The maj
4 - - mpSci pring 2024, Sets Maps C

20

Maps

22

Map pairs keys with values

« Like an address book, lookup the value
(address) of a key (person). Like a dictionary in

Python.

Bob 101 E. Main St.
Naomi 200 Broadway
Stavros 121 Durham Ave.

* Map is an interface, must have methods like:
« put(k, v):Associate value v with key k
« get(k): Return the value associated with key k
« containsKey(k):Return true if key k is in the Map

23

1/29/2024

1/29/2024

Implementations of Map

1 import java.util.HashMap;

Two major implementations: 2 foeort java. vt Hoos

import java.util.TreeMap;

* HashMap: Very efficient put, get, containsKey

* TreeMap: Nearly as efficient, keeps keys sorted
by their “natural ordering”

Map<KEY_TYPE, VALUE_TYPE> Createa TreeMap to
implement this Map
8 Map<String, String> addressBook = new TreeMap<();
9 addressBook.put("Bob", "1@1 E. Main St.")
10 addressBook.put("Naomi"”, "200 Broadway"); Sorted by keys due
11 addressBook.put("Xi", "121 Durham Ave."); t0 TreeMap
12 System.out.printlnCaddressBook) ;

{Bob=101 E. Main St., Naomi=20@ Broadway, Xi=121 Durham Ave.}

mpSci pring 2024, Sets Map:

Check before you get

If you call .get(key) on a key not in the map,
returns null, can cause program to crash.

6 Map<String, Integer> myMap = new HashMap<>();
7 int val = myMap.get("hi");

Exception in thread "main” java.lang.NullPointerException: Cannot invoke "java.lang.
Integer.intValue()" because the return value of "java.util.Map.get(Object)” is null

Instead, check first with .containsKey().

Map<String, Integer> myMap = new HashMap<>();
if (myMap.containskKey("hi")) {
int val = myMap.get("hi");

[N RN}

}

Adding “default” values

Often want a “default” value associated with new
keys (examples: 0, empty list, etc.). Two options:
* .putIfAbsent(key, val)

* Check if does not contain key before put

6 Map<String, Integer> myMap = new HashMap<>();
7

8 myMap.putIfAbsent("hi", 0);

9

10 // Equivalent to line 8

11 if (!myMap.containsKey("hi")) {

12 myMap .put("hi", 0);

13 13

Updating maps

Immutable values: Mutable values (e.g. collections)
e .get() returnsacopy + .get() returns
of the value. reference to collection.
* Must use .put() again < Update the collection
to update. directly.
8 Map<String, Integer> myMap = new HashMap<>();
9 myMap.put("hi", ©@);
10 int currentVal = myMap.get("hi");
11 myMap.put("hi", currentVal + 1);

14 Map<String, List<Integer>> otherMap = new HashMap<(Q);
15 otherMap.put("hi", new Arraylist<(Q));
16 otherMap.get("hi").add(@);

27
Counting with a Map
In this example we count how many of each
character occur in message.
5 String message = ”compute;ﬁs(ic;ce is so much fun";
6 char[] messageCharArray = message.toCharArray();
7 TreeMap<Character, Integer> charCounts = new TreeMap<>();
8 for (char c : messageCharArray) { Check if we have not
10 charCounts.put(c, 1);
11 3} Else get current value
12 else { and increase
13 int currentVal = charCounts.get(c);
14 charCounts.put(c, currentVal + 1);
15 } Comes in order
%6 ¥ because using
17 System.out.println(charCounts); TreeMap
{ =5, c=4, e=3, f=1, h=1, i=2, m=2, n=2, o0=2, p=1, r=1, s=3, t=1, u=3}
mpSei ring 2024, Sets Map:
28
mpSc i May
29

1/29/2024

Word Pattern Problem

Live Coding (%
(<)

https://leetcode.com/problems/word-
pattern/submissions/886368133

30

1/29/2024

10

https://leetcode.com/problems/word-pattern/submissions/886368133/
https://leetcode.com/problems/word-pattern/submissions/886368133/

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 4: Wrapping up ArrayList: Analyzing Efficiency
	Slide 5: Algorithmic tradeoffs depend on the implementation
	Slide 6: How efficient is ArrayList add?
	Slide 7: Code Recap + WOTO
	Slide 8: ArrayList Growth
	Slide 9: ArrayList Growth and Algebra
	Slide 10: Math and Expectations in 201
	Slide 11: Experiment to verify hypothesis
	Slide 12: ArrayList add (to end) is (amortized) efficient
	Slide 13: ArrayList add to the front is not efficient
	Slide 14: Sets
	Slide 15: Set ADT Review
	Slide 16: Set FAQs
	Slide 17: HashSet implementation of Set is very efficient
	Slide 18: Count Unique Words?
	Slide 19: TreeSet stores sorted
	Slide 20: HashSet and TreeSet Implementations
	Slide 22: Maps
	Slide 23: Map pairs keys with values
	Slide 24: Implementations of Map
	Slide 25: Check before you get
	Slide 26: Adding “default” values
	Slide 27: Updating maps
	Slide 28: Counting with a Map
	Slide 29: Problem-Solving with Sets and Maps
	Slide 30: Word Pattern Problem

