L6: Hashing,
HashMap, HashSet

Alex Steiger
CompSci 207: Spring 2024
1/31/24

Announcements, Coming up

 Today, Wednesday, 1/31
* APT 2 due

« Monday, 2/5

 Project 1: NBody due (future projects will be 2 week)
« Project 2: Markov out (due in 2 weeks)

* Next Wednesday, 2/8
« APT 3 due

Finishing
Maps AP

1/29/24 CompSci 201,Spring 2024, Sets Maps 3

Map pairs keys with values

» | ike an address book, lookup the value
(address) of a key (person). Like a dictionary in
Python.

Bob 107 E. Main St.
Naomi 200 Broadway

Stavros 121 Durham Ave.

* Map is an interface, must have methods like:
* put(k, v):Associate value v with key k
« get(k): Return the value associated with key k
« containsKey(k): Return true if key k is in the Map

1/29/24 CompSci 201,Spring 2024, Sets Maps

Implementations of Map

1 import java.util.HashMap;

Two major implementations: 2 inert java.util.tep;

import java.util.TreeMap;

* HashMap: Very efficient put, get, containsKey

* TreeMap: Nearly as efficient, keeps keys sorted
by their “natural ordering’

Map<KEY_TYPE, VALUE_TYPE> CITEElE & TRECITED
implement this Map

8 Map<String, String> addressBook = new TreeMap<>();

9 addressBook.put("Bob", "101 E. Main St.");
10 addressBook.put("Naomi", "200 Broadway"); Sorted by keys due
11 addressBook.put("X1i", "121 Durham Ave."); to TreeMap
12 System.out.printlnCaddressBook);

{Bob=1@1 E. Main St., Naomi=200 Broadway, X1=121 Durham Ave.}

1/29/24 CompSci 201,Spring 2024, Sets Maps 5

Check before you get

If you call .get(key) on a key not in the map,
returns null, can cause program to crash.

6
/

Map<String, Integer> myMap = new HashMap<>(Q);
int val = myMap.get("hi™);

Exception in thread "main" java.lang.NullPointerException: Cannot invoke "java.lang.
Integer.intValue()" because the return value of "java.util.Map.get(Object)" is null

Instead, check first with .containsKey().

Map<String, Integer> myMap = new HashMap<>();
if (myMap.containsKey("hi")) {
int val = myMap.get("hi");

O 00 N O

}

1/29/24 CompSci 201,Spring 2024, Sets Maps 6

Adding “default” values

Often want a “default” value associated with new
keys (examples: 0, empty list, etc.). Two options:

* .putIfAbsent(key, val)
» Check if does not contain key before put

6 Map<String, Integer> myMap = new HashMap<>();
/

8 myMap .putIfAbsent("hi", @);

9

10 // Equivalent to line 8

11 1f (ImyMap.containsKey("hi")) {

12 myMap .put("hi", 0);

13 1

1/29/24 CompSci 201,Spring 2024, Sets Maps

10
11

Updating maps

Immutable values: Mutable values (e.g. collections)
e .get() returnsacopy ¢ .get() returns

of the value. reference to collection.
 Must use .put() again < Update the collection

to update. directly.

1/29/24

Map<String, Integer> myMap = new HashMap<>();
myMap .put("hi", @);

int currentVal = myMap.get("hi");
myMap.put("hi", currentVal + 1);

14 Map<String, List<Integer>> otherMap = new HashMap<>();
15 otherMap.put("hi", new ArraylList<>());
16 otherMap.get("hi").add(@);

CompsSci 201,Spring 2024, Sets Maps 8

Counting with a Map

In this example we count how many of each
character occur in message.

String message = "computer science is so much fun";
char[] messageCharArray = message.toCharArray();
TreeMap<Character, Integer> charCounts = new TreeMap<>();

for (char ¢ : messageCharArray) { Check if we have not
if (!charCounts.containsKey(c)) { seen c yet
10

charCounts.put(c, 1);

11 } Else get current value
12 else { and increase

O o N O U

13 int currentVal = charCounts.get(c);

14 charCounts.put(c, currentVal + 1);

15 3 Comes in order
16 } | because using
17 System.out.println(charCounts);

TreeMap
{ =5, c=4, e=3, f=1, h=1, i=2, m=2, n=2, o=2, p=1, r=1, s=3, t=1, u=3}

1/29/24 CompSci 201,Spring 2024, Sets Maps 9

HashSet/HashMap
Implementation

HashSet/Map efficiency

Constant time = does not
depend on the number of
values stored in the Set.

public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, Serializg

#Cked by a hash table (actually a HashMap instance). It makes no
¥ the set; in particular, it does not guarantee that the order will remain
its the null element.

This class implements the Set interfacg
guarantees as to the iteration ord
constant over time. This class g

This class offers constant time performance for the basic operations (add, remove, contains and size),
assuming the hash function disperses the elements properly among the buckets. Iterating over this set

K¢ proportional to the sum of the HashSet instance's size (the number of elements) plus the
"capacity" of tMggacking HashMap instance (the number of buckets). Thus, it's very important not to set the
initial capacity too i (or the load factor too low) if iteration performance is important.

Java AP| documentation

Under assumptions...

1/31/24 CompSci 201, Spring 2024, Hashing 15

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

Aside: Does constant time lookup

(contains (), get(), etc.) matter?

 Social media: When you login, server needs to
lookup to display the correct page for you. =

« Billions of accounts! Look it up in a List? NO! Constant ,Qe
time lookup with hashing. o

» Routing/directions application: Need to lookup <
roads from a given intersection. x

« How many possible roads? Search through a list? NO!
Constant time lookup with hashing.

 Could go on!

Big questions about hashing
Last class: Usage of APl HashSet/HashMap.

Today:
1. How does a hash table work to implement
HashMap/HashSet?

2. Why do .equals() and .hashCode()
Mmatter?

3. Why are the add (), contains(), put(),
get (), and containsKey(), etc., all constant
time (and under what assumptions)?

Hash Table Concept

* Implement HashMap with an Array
also, storing <key, value> pairs
« HashSet: A HashMap with only keys (no vals)

* Instead of always adding to next open

spot (0, 1,2, 3..)..

<“hi”, 5>

* Big idea: Calculate hash (an int) of key

<“ok”, 3>

v | |l WI[IN| LR O

to determine where to store & lookup

« Java OOP: Will use the hashCode () method

A

of the key to get the hash /5

hash(“ok”)==4

« Same hash to put and get, no looping
over list

1/31/24 CompSci 201, Spring 2024, Hashing 18

HashMap methods at a high level

Always start by getting the hash =
Math.abs(key.hashCode()) % list.size()

Absolute value and % (remainder

when dividing by) list size ensures
valid index

* put(key, value)
« Add (<key, value>) to list at index hash

* |f key already there, update value

« get(key)

<“hi”, 5>

« Return value paired with key at index

hash position of list

<“ok”™, 3>

« containsKey(key)
st

(
e Check if ke* exists at index hash
position of 1i

N oo phAlWWDN RO

1/31/24 CompSci 201, Spring 2024, Hashing 19

HashMap put/get example

%) <“cs”, 201>
1 <“hi”, 5

« Suppose we have the <key, value>
pair <“cs”, 201>.

Hash:

jshell> Math.abs("cs".hashCode()) % 8
$7 ==> 0

e put(“cs”, 201) in position O
« get(“cs”) by looking up position 0,” returns 207
returning the value

1/31/24 CompSci 201, Spring 2024, Hashing 20

Collisions

e SUppose now we want to put

<“fain”’, 104>. 0 <“cs”, 201>
1 <“hi”, 5>
Hash:
jshell> Math.abs("fain".hashCode()) % 8

$11 ==> ©
<“ok”, 3>

* put(“fain”, 104) in position O

« But <“cs”, 201> is already stored at
position 0! Call this a collision.

N o vl bW

Dealing with collisions: concepts

* Think of the hash table as an
Array of “buckets”.

» Fach bucket can store multiple
<key, value> pairs.

* put(key, value)
« Add to hash index bucket
« Update value if key already in bucket

» get(key)
« Loop over keys in hash index bucket
 Return value of one that equals() key

0

7

<“cs”, 201>
<“fain”, 104>

<“hi”, 5>

Dealing with collisions: details

* Bucket is really another list
« Hash table is really an array of lists of <key, value> pairs.
« We call this technigue for dealing with collisions chaining.

keys buckets entries
000 | X
X Lisa Smith 521-8976
001 |e—"
John Smith
002 | X
: : f John Smith 521-1234
Lisa Smith
151 | x ¢
Sam Doe - X Sandra Dee 521-9655
153
154 | X
Sandra Dee
: X Ted Baker 418-4165
253 | X
Ted Baker 52l
o
] -
lllustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0, 255 X Sam Doe 221-5030
https://commons.wikimedia.org/w/index.php?curid=6471915

2. HashSet and HashMap have constant time add, contains, put, get, and containsKey
operations. That means that these methods... * [T}

O Take the same amount of time to run

O Have the same number of operations

%untimes do not depend on number of elements of the Set/Map

1/31/24 CompSci 201, Spring 2024, Hashing 25

3. What is stored in each "bucket" in a HashMap? *

O A <key, value> pair

O A list of keys

O A list of values

%Iist of <key, value> pairs

1/31/24 CompSci 201, Spring 2024, Hashing

iy

26

4. Suppose we want to put <s, 1> into a HashMap where s.hashCode() = 12. If hash
table has 4 buckets, in which bucket will we store <s, 1>7* [T}

Select your answer Answer: 0 W

1/31/24 CompSci 201, Spring 2024, Hashing 27

Where does equals() come in?

* It multiple <key, value> pairs in same bucket,
neﬁd to know which to get() or update on a put()
call.

« Always the pair where the key in the bucket
equals() the key we put() or get().

* Need equals() to work correctly for the key
type
 String keys? Integer? Already implemented for you.

 Storing objects of a class you write? Need to override and
implement equals().

What happens without equals()?
Hashing cats

4 public class Cat {

5 String name; Even though all cat objects

6 int age; have the same hashCode() of

7 0 and so go to the same

8 @0verride bucket...

9 public int hashCode() {

10 return 0; And these 2 Cat
11 ¥ objects have the
12 same values

Run | Debug

13 public static void main(String[] args) {
14 Set<Cat> myCats = new HashSet<>();
15 myCats.add(new Cat(:k?r'k:, 2)); Prints 2. cannot detect
16 myCats.add(ne\tv Cat("kirk", ?)); duplicates without
17 System.out.println(myCats.size());
18 ! equals()

1/31/24 CompSci 201, Spring 2024, Hashing 29

hashCode Correctness

* Need hashCode() to work correctly for the key
type.
 String keys? Already implemented for you.

» Storing objects of classes you write? Need to
override and implement hashCode().

« What makes a hashCode () “correct” (not
necessarily efficient)?

 Any two objects that are equals () should have the
same hashCode().

What happens without
hashCode()? Hashing more cats

4 public class Cat {

5 stmng name; Fixed equals () but
g int age; removed hashCode (), using
8 @verride default

9 public boolean equals(Object o) {

10 Cat other = (Cat) o;

11 if ((other.name.equals(this.name)) && (other.age == this.age)) {

12 return true;

13 ¥

14 return false;

15 }

16

Run | Debug

17 public static void main(String[] args) {

18 Set<Cat> myCats = new HashSet<>();

19 myCats.add(new Cat("kirk", 2));
20 myCats.add(new Cat("kirk", 2));
21 System.out.println(myCats.size());
22 }

1/31/24 CompSci 201, Spring 2024, Hashing 31

Cat with equals() and
hashCode ()

4 public class Cat {

5 string hame; equals() if have same
S it age; name and age

8 @0verride

9 public boolean equals(Object o) {

10 Cat other = (Cat) o;

11 if (Cother.name.equals(this.name)) && (other.age == this.age)) {
12 return true;

13 } Uses String hashCode () of name
14 return false; concat with age, if equals() will
15 } have same hashCode()

16

17 @0verride

18 public int hashCode() {

19 return (name + Integer.toString(age)).hashCode();
20 }

1/31/24 CompSci 201, Spring 2024, Hashing 32

Aside: toString()

Don't need for hashing, but toString() method

allo

W oo N oY U1 b

10
11
12

13
14
15
16
17

1/31/24

WS “nice” printing.
public class Cat {

String name;

int age;

toString() method used for
printing, including inside a

Collection

@0verride
public String toString(Q) {
return name,

}

Run | Debug

public static void main(String[] args) { Prints kirk instead
Set<Cat> myCats = new HashSet<>(); of Cat@. ..
myCats.add(new Cat("kirk", 2));
System.out.println(myCats);

}

CompSci 201, Spring 2024, Hashing 33

What is the String hashCode()?

Remember how hashCode()

is used to get the bucket

private int getBucket(String s) { index.
int val = Math.abs(s.hashCode()) % myTable.size();
return val;

hashCode 'jshell> "hello".hashCode();

. $4 ==> 99162322
public int hashCode()

Returns a hash code for this string. The hash code for a String object is ([] shell> " hellp " hashCode() -
s[8]*317(n-1) + s[1]*31~(n-2) + ... + s[n-1] $5 ==> 99162323

using int arithmetic, where s[i] is the ith characSRugihe string, nis thljshell> "what".hashCode();
the string, and ~ indicates exponentiation. (The hash value's Rty s §6 ==> 3648196

Overrides:

hashCode in class Object Java API String Interprets each character as
i documentation an int, does arithmetic.

a hash code value for this object.

1/31/24 CompSci 201, Spring 2024, Hashing 34

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()

Revisiting Hashing Efficiency
« Runtime of get (), put(), and containsKey()

= Time to get the has
Constant, does not depend on
number of pairs in Map

+ Time to search “bucket”, calling .equals()
on everything in the bucket

Depends on

number of pairs
per bucket

= HashMaps are faster with more buckets

1/31/24 CompSci 201, Spring 2024, Hashing 35

‘correct” but inefficient
hashCode ()

Correctness requirement: Any

.equals () keys should have the L1
same hashCode().

28 @0verride

29 public int hashCode() { SN O SO S
30 return 0; S S
31 }

Still satisfies, but not good...

Stores everything in the first bucket!
No more efficient than a list!

1/31/24 CompSci 201, Spring 2024, Hashing

36

Correct and efficient hashCode ()

From the Java 17 APl documentation:

» Correctness: “If two objects are
equal..hashCode..must produce the same
integer result.”

« Efficiency: “...producing distinct integer results
for unequal objects may improve the
performance of hash tables.”

jshell> "hello".hashCode();
$4 ==> 99162322

« String hashCode() sshell> "hellp".hashCode();

satisfies both $5 ==> 99162323

jshell> "what".hashCode();
$6 ==> 3648196
1/31/24 CompSci 201, Spring 2024, Hashing 37

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()

Cat hashCode () revisited

4 public class Cat {
5 String name; equals() if have same
S int age; name and age
8 @0verride
9 public boolean equals(Object o) {
10 Cat other = (Cat) o;
11 if (Cother.name == this.name) && (other.age == this.age)) {
12 return true;
13 }
14 return false; MUCELEISQRVINEVE -
15 3 same hashCode () If unequal? Unlikely (but
16 possiblel) to have the
17 @0verride same hashCode().
18 public int hashCode() {
19 return (name + Integer.toString(age)).hashCode();
20 }

1/31/24 CompSci 201, Spring 2024, Hashing 38

Simple unitorm hashing
assumption (SUHA)

« Suppose we hash N pairs to M buckets.

 Simple uniform hashing assumption:

Any element (i.e., key for HashMap, value for HashSeE) IS
equally likely to hash into any bucket, independently o
where any other element hashes to. [CLRS]

 Probability any two unequal elements hash into the
same bucket: 1/M
« Spread of pairs to buckets looks random (but is not).
« Ways to design such hash functions, not today

« We make this assumption to analyze efficiency in theory,
can verify runtime performance in practice

Implications of SUHA

« Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

e Stronger statements are true: Very high probability
that any bucket has approximately N/M pairs.

Constant, does not depend on N or M.

* Runtime implication?
* Time to get the hash

» Time to search over the hash index “bucket”
« Calling .equals() on everything in the bucket

Expect ~ N/M pairs to search

1/31/24 CompSci 201, Spring 2024, Hashing 40

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Finishing Maps API
	Slide 4: Map pairs keys with values
	Slide 5: Implementations of Map
	Slide 6: Check before you get
	Slide 7: Adding “default” values
	Slide 8: Updating maps
	Slide 9: Counting with a Map
	Slide 14: HashSet/HashMap Implementation
	Slide 15: HashSet/Map efficiency
	Slide 16: Aside: Does constant time lookup (contains(), get(), etc.) matter?
	Slide 17: Big questions about hashing
	Slide 18: Hash Table Concept
	Slide 19: HashMap methods at a high level
	Slide 20: HashMap put/get example
	Slide 21: Collisions
	Slide 22: Dealing with collisions: concepts
	Slide 23: Dealing with collisions: details
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Where does equals() come in?
	Slide 29: What happens without equals()? Hashing cats
	Slide 30: hashCode Correctness
	Slide 31: What happens without hashCode()? Hashing more cats
	Slide 32: Cat with equals() and hashCode()
	Slide 33: Aside: toString()
	Slide 34: What is the String hashCode()?
	Slide 35: Revisiting Hashing Efficiency
	Slide 36: “correct” but inefficient hashCode()
	Slide 37: Correct and efficient hashCode()
	Slide 38: Cat hashCode() revisited
	Slide 39: Simple uniform hashing assumption (SUHA)
	Slide 40: Implications of SUHA

