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L6: Hashing, 
HashMap, HashSet

Alex Steiger

CompSci 201: Spring 2024

1/31/24

Announcements, Coming up
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• Today, Wednesday, 1/31
• APT 2 due

• Monday, 2/5
• Project 1: NBody due (future projects will be 2 week)

• Project 2: Markov out (due in 2 weeks)

• Next Wednesday, 2/8
• APT 3 due

Finishing 
Maps API
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Map pairs keys with values
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• Like an address book, lookup the value 
(address) of a key (person). Like a dictionary in 
Python.

• Map is an interface, must have methods like: 
• put(k, v): Associate value v with key k

• get(k): Return the value associated with key k 

• containsKey(k): Return true if key k is in the Map

Keys Values

Bob 101 E. Main St.

Naomi 200 Broadway

Stavros 121 Durham Ave.

Implementations of Map

Two major implementations:

• HashMap: Very efficient put, get, containsKey

• TreeMap: Nearly as efficient, keeps keys sorted 
by their “natural ordering”
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Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to 
implement this Map

Sorted by keys due 
to TreeMap

Check before you get

If you call .get(key) on a key not in the map, 
returns null, can cause program to crash.

Instead, check first with .containsKey().
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Adding “default” values

Often want a “default” value associated with new 
keys (examples: 0, empty list, etc.). Two options:

• .putIfAbsent(key, val)

• Check if does not contain key before put
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Updating maps

Immutable values:

• .get() returns a copy 
of the value. 

• Must use .put() again 
to update.

Mutable values (e.g. collections)

• .get() returns 
reference to collection.

• Update the collection 
directly. 
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Counting with a Map

In this example we count how many of each 
character occur in message.
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Comes in order 
because using 

TreeMap

Check if we have not 
seen c yet

Else get current value 
and increase
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HashSet/HashMap
Implementation
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HashSet/Map efficiency

1/31/24 CompSci 201, Spring 2024, Hashing 15

Java API documentation

Constant time = does not 
depend on the number of 
values stored in the Set.

Under assumptions…

Aside: Does constant time lookup 
(contains(), get(), etc.) matter?
• Social media: When you login, server needs to 

lookup to display the correct page for you.
• Billions of accounts! Look it up in a List? NO! Constant 

time lookup with hashing.

• Routing/directions application: Need to lookup 
roads from a given intersection.
• How many possible roads? Search through a list? NO! 

Constant time lookup with hashing.

• Could go on! 
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https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html
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Big questions about hashing

Last class: Usage of API HashSet/HashMap.

Today:

1. How does a hash table work to implement 
HashMap/HashSet?

2. Why do .equals() and .hashCode()
matter?

3. Why are the add(), contains(), put(), 
get(), and containsKey(), etc., all constant 
time (and under what assumptions)?
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Hash Table Concept
• Implement HashMap with an Array 

also, storing <key, value> pairs
• HashSet: A HashMap with only keys (no vals)

• Instead of always adding to next open 
spot (0, 1, 2, 3…)…

• Big idea: Calculate hash (an int) of key
to determine where to store & lookup
• Java OOP: Will use the hashCode()method 

of the key to get the hash

• Same hash to put and get, no looping 
over list
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hash(“ok”)== 4

HashMap methods at a high level 

Always start by getting the hash = 
Math.abs(key.hashCode()) % list.size()

• put(key, value)
• Add (<key, value>) to list at index hash
• If key already there, update value

• get(key)
• Return value paired with key at index 

hash position of list
• containsKey(key)

• Check if key exists at index hash 
position of list
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Absolute value and % (remainder 
when dividing by) list size ensures 

valid index
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• Suppose we have the <key, value> 
pair <“cs”, 201>.

Hash:

• put(“cs”, 201) in position 0

• get(“cs”) by looking up position 0, 
returning the value

HashMap put/get example
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<“cs”, 201>

returns 201

Collisions
• Suppose now we want to put 
<“fain”, 104>.

Hash:

• put(“fain”, 104) in position 0

• But <“cs”, 201> is already stored at 
position 0! Call this a collision.
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Dealing with collisions: concepts

• Think of the hash table as an 
Array of “buckets”.

• Each bucket can store multiple 
<key, value> pairs.

• put(key, value)
• Add to hash index bucket
• Update value if key already in bucket

• get(key)
• Loop over keys in hash index bucket
• Return value of one that equals() key 
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Dealing with collisions: details
• Bucket is really another list

• Hash table is really an array of lists of <key, value> pairs.

• We call this technique for dealing with collisions chaining.
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Illustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=6471915
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Where does equals() come in?

• If multiple <key, value> pairs in same bucket, 
need to know which to get() or update on a put() 
call.

• Always the pair where the key in the bucket 
equals() the key we put() or get().

• Need equals() to work correctly for the key 
type
• String keys? Integer? Already implemented for you.
• Storing objects of a class you write? Need to override and 

implement equals().
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What happens without equals()? 
Hashing cats
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Even though all cat objects 
have the same hashCode() of 

0 and so go to the same 
bucket…

And these 2 Cat 
objects have the 

same values

Prints 2, cannot detect 
duplicates without 

equals()
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hashCode Correctness

• Need hashCode() to work correctly for the key 
type.
• String keys? Already implemented for you.

• Storing objects of classes you write? Need to 
override and implement hashCode().

• What makes a hashCode() “correct” (not 
necessarily efficient)?
• Any two objects that are equals() should have the 

same hashCode().
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What happens without 
hashCode()? Hashing more cats
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Fixed equals() but 
removed hashCode(), using 

default

Still prints 2! 

Cat with equals() and 
hashCode() 
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equals() if have same 
name and age

Uses String hashCode() of name 
concat with age, if equals() will 

have same hashCode()
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Aside: toString()

Don’t need for hashing, but toString() method 
allows “nice” printing.
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toString() method used for 
printing, including inside a 

Collection

Prints kirk instead 
of Cat@...

What is the String hashCode()?
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Java API String 

documentation

Remember how hashCode() 
is used to get the bucket 

index.

Interprets each character as 
an int, does arithmetic.

Revisiting Hashing Efficiency

• Runtime of get(), put(), and containsKey()

= Time to get the hash

+ Time to search “bucket”, calling .equals() 
on everything in the bucket

⇒ HashMaps are faster with more buckets
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Constant, does not depend on 
number of pairs in Map

Depends on 
number of pairs 

per bucket
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https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()
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“correct” but inefficient 
hashCode()

Correctness requirement: Any 
.equals() keys should have the 
same hashCode().

Still satisfies, but not good…

Stores everything in the first bucket! 
No more efficient than a list!

1/31/24 CompSci 201, Spring 2024, Hashing 36

Correct and efficient hashCode()

From the Java 17 API documentation:

• Correctness: “If two objects are 
equal…hashCode…must produce the same 
integer result.”

• Efficiency: “…producing distinct integer results 
for unequal objects may improve the 
performance of hash tables.”

• String hashCode()

satisfies both
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Cat hashCode() revisited
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equals() if have same 
name and age

If equals() will have 
same hashCode() If unequal? Unlikely (but 

possible!) to have the 
same hashCode().
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()
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Simple uniform hashing 
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption:
Any element (i.e., key for HashMap, value for HashSet) is 
equally likely to hash into any bucket, independently of 
where any other element hashes to. [CLRS]

• Probability any two unequal elements hash into the 
same bucket: 1/M
• Spread of pairs to buckets looks random (but is not).
• Ways to design such hash functions, not today
• We make this assumption to analyze efficiency in theory, 

can verify runtime performance in practice
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Implications of SUHA

• Expected number of pairs per bucket under SUHA? 
N/M [N pairs, M buckets].

• Stronger statements are true: Very high probability 
that any bucket has approximately N/M pairs.

• Runtime implication?

• Time to get the hash

• Time to search over the hash index “bucket” 

• Calling .equals() on everything in the bucket
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Constant, does not depend on N or M.

Expect ~ N/M pairs to search
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