
1/31/2024

1

1/31/24 CompSci 201, Spring 2024, Hashing 1

L6: Hashing, 
HashMap, HashSet

Alex Steiger

CompSci 201: Spring 2024

1/31/24

Announcements, Coming up

1/31/24 CompSci 201, Spring 2024, Hashing 2

• Today, Wednesday, 1/31
• APT 2 due

• Monday, 2/5
• Project 1: NBody due (future projects will be 2 week)

• Project 2: Markov out (due in 2 weeks)

• Next Wednesday, 2/8
• APT 3 due

Finishing 
Maps API

1/29/24 CompSci 201,Spring 2024, Sets Maps 3

1

2

3



1/31/2024

2

Map pairs keys with values

1/29/24 CompSci 201,Spring 2024, Sets Maps 4

• Like an address book, lookup the value 
(address) of a key (person). Like a dictionary in 
Python.

• Map is an interface, must have methods like: 
• put(k, v): Associate value v with key k

• get(k): Return the value associated with key k 

• containsKey(k): Return true if key k is in the Map

Keys Values

Bob 101 E. Main St.

Naomi 200 Broadway

Stavros 121 Durham Ave.

Implementations of Map

Two major implementations:

• HashMap: Very efficient put, get, containsKey

• TreeMap: Nearly as efficient, keeps keys sorted 
by their “natural ordering”

1/29/24 CompSci 201,Spring 2024, Sets Maps 5

Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to 
implement this Map

Sorted by keys due 
to TreeMap

Check before you get

If you call .get(key) on a key not in the map, 
returns null, can cause program to crash.

Instead, check first with .containsKey().

1/29/24 CompSci 201,Spring 2024, Sets Maps 6

4

5

6



1/31/2024

3

Adding “default” values

Often want a “default” value associated with new 
keys (examples: 0, empty list, etc.). Two options:

• .putIfAbsent(key, val)

• Check if does not contain key before put

1/29/24 CompSci 201,Spring 2024, Sets Maps 7

Updating maps

Immutable values:

• .get() returns a copy 
of the value. 

• Must use .put() again 
to update.

Mutable values (e.g. collections)

• .get() returns 
reference to collection.

• Update the collection 
directly. 

1/29/24 CompSci 201,Spring 2024, Sets Maps 8

Counting with a Map

In this example we count how many of each 
character occur in message.

1/29/24 CompSci 201,Spring 2024, Sets Maps 9

Comes in order 
because using 

TreeMap

Check if we have not 
seen c yet

Else get current value 
and increase

7

8

9



1/31/2024

4

HashSet/HashMap
Implementation

1/29/24 CompSci 201,Spring 2024, Sets Maps 14

HashSet/Map efficiency

1/31/24 CompSci 201, Spring 2024, Hashing 15

Java API documentation

Constant time = does not 
depend on the number of 
values stored in the Set.

Under assumptions…

Aside: Does constant time lookup 
(contains(), get(), etc.) matter?
• Social media: When you login, server needs to 

lookup to display the correct page for you.
• Billions of accounts! Look it up in a List? NO! Constant 

time lookup with hashing.

• Routing/directions application: Need to lookup 
roads from a given intersection.
• How many possible roads? Search through a list? NO! 

Constant time lookup with hashing.

• Could go on! 

1/31/24 CompSci 201, Spring 2024, Hashing 16

14

15

16

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html


1/31/2024

5

Big questions about hashing

Last class: Usage of API HashSet/HashMap.

Today:

1. How does a hash table work to implement 
HashMap/HashSet?

2. Why do .equals() and .hashCode()
matter?

3. Why are the add(), contains(), put(), 
get(), and containsKey(), etc., all constant 
time (and under what assumptions)?

1/31/24 CompSci 201, Spring 2024, Hashing 17

0

1 <“hi”, 5>

2

3

4 <“ok”, 3>

5

6

7

Hash Table Concept
• Implement HashMap with an Array 

also, storing <key, value> pairs
• HashSet: A HashMap with only keys (no vals)

• Instead of always adding to next open 
spot (0, 1, 2, 3…)…

• Big idea: Calculate hash (an int) of key
to determine where to store & lookup
• Java OOP: Will use the hashCode()method 

of the key to get the hash

• Same hash to put and get, no looping 
over list

1/31/24 CompSci 201, Spring 2024, Hashing 18

hash(“ok”)== 4

HashMap methods at a high level 

Always start by getting the hash = 
Math.abs(key.hashCode()) % list.size()

• put(key, value)
• Add (<key, value>) to list at index hash
• If key already there, update value

• get(key)
• Return value paired with key at index 

hash position of list
• containsKey(key)

• Check if key exists at index hash 
position of list

1/31/24 CompSci 201, Spring 2024, Hashing 19

0

1 <“hi”, 5>

2

3

4 <“ok”, 3>

5

6

7

Absolute value and % (remainder 
when dividing by) list size ensures 

valid index

17

18

19



1/31/2024

6

• Suppose we have the <key, value> 
pair <“cs”, 201>.

Hash:

• put(“cs”, 201) in position 0

• get(“cs”) by looking up position 0, 
returning the value

HashMap put/get example

1/31/24 CompSci 201, Spring 2024, Hashing 20

0

1 <“hi”, 5>

2

3

4 <“ok”, 3>

5

6

7

<“cs”, 201>

returns 201

Collisions
• Suppose now we want to put 
<“fain”, 104>.

Hash:

• put(“fain”, 104) in position 0

• But <“cs”, 201> is already stored at 
position 0! Call this a collision.

1/31/24 CompSci 201, Spring 2024, Hashing 21

0

1 <“hi”, 5>

2

3

4 <“ok”, 3>

5

6

7

<“cs”, 201>

Dealing with collisions: concepts

• Think of the hash table as an 
Array of “buckets”.

• Each bucket can store multiple 
<key, value> pairs.

• put(key, value)
• Add to hash index bucket
• Update value if key already in bucket

• get(key)
• Loop over keys in hash index bucket
• Return value of one that equals() key 

1/31/24 CompSci 201, Spring 2024, Hashing 22

0

1

2

3

4

5

6

7

<“cs”, 201>
<“fain”, 104>

<“hi”, 5>

<“ok”, 3>

20

21

22



1/31/2024

7

Dealing with collisions: details
• Bucket is really another list

• Hash table is really an array of lists of <key, value> pairs.

• We call this technique for dealing with collisions chaining.

1/31/24 CompSci 201, Spring 2024, Hashing 23

Illustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=6471915

1/31/24 CompSci 201, Spring 2024, Hashing 25

1/31/24 CompSci 201, Spring 2024, Hashing 26

23

25

26



1/31/2024

8

1/31/24 CompSci 201, Spring 2024, Hashing 27

Where does equals() come in?

• If multiple <key, value> pairs in same bucket, 
need to know which to get() or update on a put() 
call.

• Always the pair where the key in the bucket 
equals() the key we put() or get().

• Need equals() to work correctly for the key 
type
• String keys? Integer? Already implemented for you.
• Storing objects of a class you write? Need to override and 

implement equals().

1/31/24 CompSci 201, Spring 2024, Hashing 28

What happens without equals()? 
Hashing cats

1/31/24 CompSci 201, Spring 2024, Hashing 29

Even though all cat objects 
have the same hashCode() of 

0 and so go to the same 
bucket…

And these 2 Cat 
objects have the 

same values

Prints 2, cannot detect 
duplicates without 

equals()

27

28

29



1/31/2024

9

hashCode Correctness

• Need hashCode() to work correctly for the key 
type.
• String keys? Already implemented for you.

• Storing objects of classes you write? Need to 
override and implement hashCode().

• What makes a hashCode() “correct” (not 
necessarily efficient)?
• Any two objects that are equals() should have the 

same hashCode().

1/31/24 CompSci 201, Spring 2024, Hashing 30

What happens without 
hashCode()? Hashing more cats

1/31/24 CompSci 201, Spring 2024, Hashing 31

Fixed equals() but 
removed hashCode(), using 

default

Still prints 2! 

Cat with equals() and 
hashCode() 

1/31/24 CompSci 201, Spring 2024, Hashing 32

equals() if have same 
name and age

Uses String hashCode() of name 
concat with age, if equals() will 

have same hashCode()

30

31

32



1/31/2024

10

Aside: toString()

Don’t need for hashing, but toString() method 
allows “nice” printing.

1/31/24 CompSci 201, Spring 2024, Hashing 33

toString() method used for 
printing, including inside a 

Collection

Prints kirk instead 
of Cat@...

What is the String hashCode()?

1/31/24 CompSci 201, Spring 2024, Hashing 34

Java API String 

documentation

Remember how hashCode() 
is used to get the bucket 

index.

Interprets each character as 
an int, does arithmetic.

Revisiting Hashing Efficiency

• Runtime of get(), put(), and containsKey()

= Time to get the hash

+ Time to search “bucket”, calling .equals() 
on everything in the bucket

⇒ HashMaps are faster with more buckets

1/31/24 CompSci 201, Spring 2024, Hashing 35

Constant, does not depend on 
number of pairs in Map

Depends on 
number of pairs 

per bucket

33

34

35

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()


1/31/2024

11

“correct” but inefficient 
hashCode()

Correctness requirement: Any 
.equals() keys should have the 
same hashCode().

Still satisfies, but not good…

Stores everything in the first bucket! 
No more efficient than a list!

1/31/24 CompSci 201, Spring 2024, Hashing 36

Correct and efficient hashCode()

From the Java 17 API documentation:

• Correctness: “If two objects are 
equal…hashCode…must produce the same 
integer result.”

• Efficiency: “…producing distinct integer results 
for unequal objects may improve the 
performance of hash tables.”

• String hashCode()

satisfies both

1/31/24 CompSci 201, Spring 2024, Hashing 37

Cat hashCode() revisited

1/31/24 CompSci 201, Spring 2024, Hashing 38

equals() if have same 
name and age

If equals() will have 
same hashCode() If unequal? Unlikely (but 

possible!) to have the 
same hashCode().

36

37

38

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()


1/31/2024

12

Simple uniform hashing 
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption:
Any element (i.e., key for HashMap, value for HashSet) is 
equally likely to hash into any bucket, independently of 
where any other element hashes to. [CLRS]

• Probability any two unequal elements hash into the 
same bucket: 1/M
• Spread of pairs to buckets looks random (but is not).
• Ways to design such hash functions, not today
• We make this assumption to analyze efficiency in theory, 

can verify runtime performance in practice

1/31/24 CompSci 201, Spring 2024, Hashing 39

Implications of SUHA

• Expected number of pairs per bucket under SUHA? 
N/M [N pairs, M buckets].

• Stronger statements are true: Very high probability 
that any bucket has approximately N/M pairs.

• Runtime implication?

• Time to get the hash

• Time to search over the hash index “bucket” 

• Calling .equals() on everything in the bucket

1/31/24 CompSci 201, Spring 2024, Hashing 40

Constant, does not depend on N or M.

Expect ~ N/M pairs to search

39

40


	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Finishing Maps API
	Slide 4: Map pairs keys with values
	Slide 5: Implementations of Map
	Slide 6: Check before you get
	Slide 7: Adding “default” values
	Slide 8: Updating maps
	Slide 9: Counting with a Map
	Slide 14: HashSet/HashMap Implementation
	Slide 15: HashSet/Map efficiency
	Slide 16: Aside: Does constant time lookup (contains(), get(), etc.) matter?
	Slide 17: Big questions about hashing
	Slide 18: Hash Table Concept
	Slide 19: HashMap methods at a high level 
	Slide 20: HashMap put/get example
	Slide 21: Collisions
	Slide 22: Dealing with collisions: concepts
	Slide 23: Dealing with collisions: details
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Where does equals() come in?
	Slide 29: What happens without equals()? Hashing cats
	Slide 30: hashCode Correctness
	Slide 31: What happens without hashCode()? Hashing more cats
	Slide 32: Cat with equals() and hashCode() 
	Slide 33: Aside: toString()
	Slide 34: What is the String hashCode()?
	Slide 35: Revisiting Hashing Efficiency
	Slide 36: “correct” but inefficient hashCode()
	Slide 37: Correct and efficient hashCode()
	Slide 38: Cat hashCode() revisited
	Slide 39: Simple uniform hashing assumption (SUHA)
	Slide 40: Implications of SUHA

