1/31/2024

L6: Hashing,
HashMap, HashSet

Alex Steiger
CompSci 201: Spring 2024
1/31/24

Announcements, Coming up

* Today, Wednesday, 1/31
« APT 2 due

* Monday, 2/5
« Project 1: NBody due (future projects will be 2 week)
« Project 2: Markov out (due in 2 weeks)

* Next Wednesday, 2/8
« APT 3 due

Finishing
Maps AP]

Map pairs keys with values

« Like an address book, lookup the value
(address) of a key (person). Like a dictionary in

Python.

Bob 101 E. Main St.
Naomi 200 Broadway
Stavros 121 Durham Ave.

* Map is an interface, must have methods like:
« put(k, v):Associate value v with key k
« get(k): Return the value associated with key k
« containsKey(k):Return true if key k is in the Map

Implementations of Map

1 import java.util.HashMap;

Two major implementations: ¢ tmport java.util.Map;

3 import java.util.TreeMap;

* HashMap: Very efficient put, get, containsKey

* TreeMap: Nearly as efficient, keeps keys sorted
by their “natural ordering”

Map<KEY_TYPE, VALUE_TYPE> Create a TreeMap to
- = implement this Map
8 Map<String, String> addressBook = new TreeMap<();
9 addressBook.put("Bob", "1@1 E. Main St.");

10 addressBook.put("Naomi", "200 Broadway");

Sorted by keys due
11 addressBook.put("Xi", "121 Durham Ave."); to TreeMap
12 System.out.printin(addressBook);

{Bob=101 E. Main St., Naomi=20@ Broadway, Xi=121 Durham Ave.}

mpSci pring 2024, Sets Map:

Check before you get
If you call .get(key) on a key not in the map,
returns null, can cause program to crash.

6
7

Map<String, Integer> myMap = new HashMap<>();
int val = myMap.get("hi");

Exception in thread "main” java.lang.NullPointerException: Connot invake "jova.lang.
Integer. intValue()" because the return value of “java.util.Map.get(Object)” is null

Instead, check first with . containsKey().

Map<String, Integer> myMap = new HashMap<>();
if (myMap.containsKey("hi")) {
int val = myMap.get("hi");

0w~ o

3

1/31/2024

10
11

Adding “default” values

Often want a “default” value associated with new
keys (examples: 0, empty list, etc.). Two options:

* .putIfAbsent(key, val)
* Check if does not contain key before put

Immutable values:

Map<String, Integer> myMap = new HashMap<>();

myMap .putIfAbsent("hi", 0);
// Equivalent to line 8

if (!myMap.containsKey("hi")) {
myMap .put("hi", @);

Updating maps

e .get() returnsacopy + .get() returns

of the value.
* Must use .put() again

to update. directly.

Map<String, Integer> myMap = new HashMap<>();
myMap.put("hi", ©@);

int currentVal = myMap.get("hi");
myMap.put("hi", currentVal + 1);

14 Map<String, List<Integer>> otherMap = new HashMap<(Q);

15 otherMap.put("hi", new Arraylist<(Q));
16 otherMap.get("hi").add(@);

Counting with a Map

Mutable values (e.g. collections)

reference to collection.
» Update the collection

In this example we count how many of each
character occur in message.

String message = "computer science is so much fun";

{ =5, c=4, e=3, f=1, h=1, i=2, m=2, n=2, o=2, p=1, r=1, s=3,

char[] messageCharArray = message.toCharArray();

TreeMap<Character, Integer> charCounts = new TreeMap<>();

for (char ¢ : messageCharArray) { Check if we have not
if (!charCounts.containsKey(c)) { seen c yet

charCounts.put(c, 1);

} Else get current value
else { and increase

int currentVal = charCounts.get(c);
charCounts.put(c, currentVal + 1);

¥ Comes in order
¥ because using

System.out.println(charCounts);

ompSci pring 2024, Sets May

TreeMap
t=1, u=3}

1/31/2024

HashSet/HashMap
Implementation

14

HashSet/Map efficiency

Constant time = does not

e el depend on the number of
public class HashSet<E> .

extends AbstractSet<Es values stored in the Set.
implements Set<E>, Cloneable, Serializg
Pod by a hash table (actually a HashMap instance). It makes no
: in particular; it does not guarantee that the order will remain
1 element.

This class implements t
guarantees as Lo the iter e
constant over time. This #iits the nul

This class offers constant time performance for the basic operations (add, remove, contains and size),
assuming the hash function disperses the elements properly among the buckets, Iterating over this set
2@ (the number of elements) plus the

Rgcking HashMap instance (the number of bucksts). Thus, it's very impartant not to set the
or the load factor too low) if iteration performance is important.

15

Aside: Does constant time lookup

(contains(), get(), etc.) matter?

* Social media: When you login, server needs to
lookup to display the correct page for you.
« Billions of accounts! Look it up in a List? NO! Constant
time lookup with hashing.

* Routing/directions application: Need to lookup +
roads from a given intersection.
« How many possible roads? Search through a list? NO!
Constant time lookup with hashing.

+ Could go on!

16

1/31/2024

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

1/31/2024

Big questions about hashing
Last class: Usage of APl HashSet/HashMap.

Today:

1. How does a hash table work to implement
HashMap/HashSet?

2. Why do .equals() and .hashCode()
matter?

3. Why are the add(), contains(), put(),
get(), and containsKey(), etc., all constant
time (and under what assumptions)?

17

Hash Table Concept

» Implement HashMap with an Array
also, storing <key, value> pairs
» HashSet: A HashMap with only keys (no vals)

* Instead of always adding to next open

spot (0,1,2,3..).. j 0. B
2

« Bigidea: Calculate hash (an int) of key j G
to determine where to store & lookup |

« Java OOP: Will use the hashCode () method 9/
of the key to get the hash z

» Same hash to put and get, no looping
over list

18

HashMap methods at a high level

Always start by getting the hagh =
Math.abs (key.hashCode()) % list.size()

Absolute value and % (remainder
when dividing by) list size ensures
valid index

« put(key, value)
+ Add (<key, value>) to list at index hash
« If key already there, update value
* get(key)
« Return value paired with key at index
hash position of list
« containsKey(key)

» Check if key exists at index hash
position of Tist

<“hi”, 5>

», 3

Nlolu pslwn ke
~
[}
=

19

HashMap put/get example

» Suppose we have the <key, value>
pair <“cs”, 201>.

Hash:
jshell> Math.abs("cs".hashCode()) % 8
$7 => 0

* put(“cs”, 201) in position 0

* get(“cs”) by looking up position 0,
returning the value

20

Collisions

* Suppose now we want to put
<“fain”, 104>.

Hash:

jshell> Math.abs("fain".hashCode()) % 8
$11 => 0

e put(“fain”, 104) in position 0

* But <“cs”, 201> is already stored at
position 0! Call this a collision.

0 <“cs”, 201>
1 /<hi”, sf
2/

/
4 <o, 3>
s |/
s |/
7

returns 201

1/31/2024

<“cs”, 201>

/| <hi”, s>

<“ok”, 3>

Nolu rluNnr e

21
Dealing with collisions: concepts
* Think of the hash table as an o [cecs”, 201>
Array of “buckets”. <“fain”, 104>
: <“hi”, 5>
* Each bucket can store multiple |2
<key, value> pairs. g
« put(key, value) f | ok, 3>
« Add to hash index bucket 5
« Update value if key already in bucket
- get(key) ¢
« Loop over keys in hash index bucket |7
« Return value of one that equals() key
22

Dealing with collisions: details

* Bucket is really another list

* Hash table is really an array of lists of <key, value> pairs.

» We call this technique for dealing with collisions chaining.

keys buckets entries

an
John smith -, 2 [

521-1234

s (91 o | serza |
\\

Sam Doe

Sandra Dee

Ted Baker

sraton s B g S Ownot Y9 30 = (x| IO

23

2. HashSet and HashMap have constant time add, contains, put, get, and containsKey
operations. That means that these methods.. * [T}

() Take the same amount of time to run

() Have the same number of operations

%unllmea do nat depend on number of elements of the Set/Map

25

3. What is stored in each "bucket” in a HashMap? * [T}

() A <key, value> pair
() Alistof keys

() Alist of values

%lm of <key, value> pairs

26

1/31/2024

27

28

29

4. Suppose we want to put <s, 1> into a HashMap where s.hashCede() = 12. If hash
table has 4 buckets, in which bucket will we store <s, 1>?7* [T}

Select your answer ANSWer: 0 v

Where does equals() comein?

« If multiple <key, value> pairs in same bucket,
neﬁd to know which to get() or update on a put()
call.

* Always the Eair where the key in the bucket

equals() t

e key we put() or get().

* Need equals() to work correctly for the key
type

public class Cat {

« String keys? Integer? Already implemented for you.
« Storing objects of a class you write? Need to override and

implement equals().

What happens without equals()?

Hashing cats

Even though all cat objects

String name;
have the same hashCode () of

int age;
0 and so go to the same
€0verride bucket..
public int hashCode() {
return @; And these 2 Cat
H objects have the

same values

Run o
public static void main(String[] args) {
Set<Cat> myCats = new HashSet<();
myCats.add(new Cat("kirk", 2));

System.out.println{myCats.size()); equals()
}

1, Spring 2024, Hashing

1/31/2024

" N ! Prints 2, cannot detect
myCats,add(nen Cat(*kirk”, 2)); duplicates without

30

32

hashCode Correctness

* Need hashCode() to work correctly for the key
type.

« String keys? Already implemented for you.
« Storing objects of classes you write? Need to
override and implement hashCode().

» What makes a hashCode() “correct” (not
necessarily efficient)?

« Any two objects that are equals () should havethe
same hashCode().

What happens without
hashCode()? Hashing more cats

public cless Cat {

String name; Fixed equals() but
int oge; removed hashCode(), using
@0verride dEfaUH

public boolean equals(Object o) {
Cot other = (Cat) o;
if (Cother.name.equalsCthis.name)) 8& (other.age == this.oge)) {
return true;
}
return false;

i

public static void main{String[] args) {
Set<Cat> myCats = new HashSet<();
myCats.add(new Cat("kirk", 2));
myCats.add(new Cat("kirk", 2));
System.out.println{myCats.size());
}

Cat with equals() and
hashCode()

public class Cat {
String name;
int age;

equals() if have same
name and age

80verride
public boolean equals(Object o) {
Cat other = (Cat) o;
if ((other.name.cquals(this.name)) && Cother.age = this.age)) {
return true;
}

return false;

Uses String hashCode() of name
concat with age, if equals () will
have same hashCode()

H

80verride

public int hashCode() {
return (name + Integer.toString(age)).hashCode();

}

201, Spring 2024, Hashing

1/31/2024

33

34

35

Aside: toString()

Don't need for hashing, but toString() method
allows “nice” printing.

4 public class Cat { toString() method used for
S Stringnase; printing, including inside a
? int age; Collection
8 @0verride
9 public String toStringQ) {
10 return name;
1 }
12
Run | Debug
13 public static void main(String[] args) { Prints kirk instead
14 Set<Cat> myCats = new HashSet<>(); of Cat@. . .
15 myCats.add(new Cat("kirk", 2));
16 System.out.println(myCats);
17 }

201, Spring 2024, Hashing

What is the String hashCode()?

Remember how hashCode()
is used to get the bucket
private int getBucket(String s) { index.
int val = Math.abs(s.hashCode()) % myTable.size();
return val;

hashCode jshell> "hello".hashCode();
$4 ==> 99162322
public int hashcoge()
Retuias & hash code for this string. The hash code for a String obiect i ({ghe 11> "hellp®.hashCode();
s[01*31°(n-1) + s[1]*31°(n-2) + ... + s[n-1] $5 ==> 99162323

Lo siring, nisthjshell> "what".hashCode();
g 86 ==> 3648196

using int arithmetic, where s [1] is the ith charad
the string, and ~ Indicates expanentiation. (The hash valud

Overrides:

hashCode in class Object Java API Strin
Retur: documentation

ahash code value for this object.

Interprets each character as
an int, does arithmetic.

Revisiting Hashing Efficiency

* Runtime of get(), put(), and containsKey ()

= Time to get the has
Constant, does not depend on
number of pairs in Map

+ Time to search “bucket”, calling .equals()
on everything in the bucket

Depends on
number of pairs
per bucket

= HashMaps are faster with more buckets

2 ompSci 201, Spring 2024, Hashinc

1/31/2024

10

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html#hashCode()

36

37

38

“correct” but inefficient
hashCode()

Correctness requirement: Any L1 1= = =]

.equals() keys should have the
same hashCode().

Ik

28 @0verride I |
29 public int hashCode() { §
30 return @; i |
31 }]
Still satisfies, but not good...

Stores everything in the first bucket!
No more efficient than a list!

Correct and efficient hashCode ()

From the Java 17 API documentation:

» Correctness: “If two objects are
equal..hashCode..must produce the same
integer result.”

« Efficiency: “...producing distinct integer results
for unequal objects may improve the
performance of hash tables.”

jshell> "hello".hashCode();
$4 ==> 99162322

: Strln. haShCOde jshell> "hellp".hashCode();
satisfies both §5 ==> 99162323

jshell> “"what".hashCodel();
$6 ==> 36481%6
124, Hashin

Cat hashCode() revisited
4 public class Cat {
5 String name; equals() if have same
f; int age; name and age
8 eoverride
9 public boolean equals(Object o) {
19 Cat other = (Cat) o;
1 if ((other.name == this.name) & (other.age == this.age)) {
1z return true;
13 }
I PRI | equals () will have :
15 3 same hashCode() If unequal? Unlikely (but
16 possible!) to have the
17 @0verride same hashCode().
18 public int hashCodeQ) {
19 return (name + Integer.toStringCage)).hashCodeQ);
20

pri 4, Ha

1/31/2024

11

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#hashCode()

Simple uniform hashing
assumption (SUHA)

* Suppose we hash N pairs to M buckets.

« Simple uniform hashing assumption:
Any element (i.e., key for HashMaE, value for HashSet) is
equally likely to hash into any bucket, independently o
where any other element hashes to. [CLRS]

« Probability any two unequal elements hash into the
same bucket: 1/M
+ Spread of pairs to buckets looks random (but is not).
» Ways to design such hash functions, not today

» We make this assumption to analyze efficiency in theory,

can verify runtime performance in practice

39

Implications of SUHA

« Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

« Stronger statements are true: Very high probability
that any bucket has approximately N/M pairs.

X . X i Constant, does not depend on N or M.
» Runtime implication?

» Time to get the hash
« Time to search over the hash index “bucket”
« Calling .equals() on everything in the bucket

Expect ~ N/M pairs to search

40

1/31/2024

12

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Finishing Maps API
	Slide 4: Map pairs keys with values
	Slide 5: Implementations of Map
	Slide 6: Check before you get
	Slide 7: Adding “default” values
	Slide 8: Updating maps
	Slide 9: Counting with a Map
	Slide 14: HashSet/HashMap Implementation
	Slide 15: HashSet/Map efficiency
	Slide 16: Aside: Does constant time lookup (contains(), get(), etc.) matter?
	Slide 17: Big questions about hashing
	Slide 18: Hash Table Concept
	Slide 19: HashMap methods at a high level
	Slide 20: HashMap put/get example
	Slide 21: Collisions
	Slide 22: Dealing with collisions: concepts
	Slide 23: Dealing with collisions: details
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Where does equals() come in?
	Slide 29: What happens without equals()? Hashing cats
	Slide 30: hashCode Correctness
	Slide 31: What happens without hashCode()? Hashing more cats
	Slide 32: Cat with equals() and hashCode()
	Slide 33: Aside: toString()
	Slide 34: What is the String hashCode()?
	Slide 35: Revisiting Hashing Efficiency
	Slide 36: “correct” but inefficient hashCode()
	Slide 37: Correct and efficient hashCode()
	Slide 38: Cat hashCode() revisited
	Slide 39: Simple uniform hashing assumption (SUHA)
	Slide 40: Implications of SUHA

