L /: Runtime Efficiency

Alex Steiger
CompSci 207: Spring 2024
2/5/24

Logistics, Coming up

« Today 2/6

* Project 1 NBody due today
* Project 2 Markov releasing tomorrow (due in 2 weeks)

« Wednesday 2/8
« APT 3 due

« Next Monday 2/13

« Midterm Exam 1
« Covers everything through THIS week, up to and
including asymptotic analysis / Big O
« Example/Practice exams available this evening

Midterm Exams

See details on course website assignments and
grading page

« 60 minutes, in-class exam
« Multiple choice + short answer
« Reason about algorithms, data structures, code.

» Can bring 1 double sided reference sheet
(8.5x11 in), write/type whatever notes you like.

 No electronic devices out during exam

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency

https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/
https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/

Exam Grades and Missing Exams

« Three midterm exams scheduled: (E1, E2, E3)

* Final exam has 3 corresponding parts: (F1, F2, F3)
« Worth 11% of grade

 OQverall exam grade has four exam parts
« Part 1, Part 2, Part 3, Final: 11% each
« Part i grade: max(Ei, Fi)

« Meaning the final exam serves in part:
» As a makeup, if you need to miss a midterm, and/or

« As an opportunity to demonstrate more learning, if
you're unhappy with your midterm score.

Midterm 1 Material/Concepts

 Lectures 1-8
« WOTO answers being added to early slides tonight

e Discussion 1-4
» Solutions to documents on schedule since D1

* Project O, Project 1

« APT 1-3, required problems
 Optional/challenge not expected, but great practice

Midterm 1 Material/Concepts

« Java
« Methods (return types, parameters)
« Classes/Objects (instance variables, constructors)

 Primitive types (e g., int, double,...) vs. primitive types (e.g., Integer, Double,
String, [any class])

« Immutability (e.g. of primitive types and Strings)
« Static vs. non-static
« Overriding methods (e.g., .equals, .hashcode, .toString)

» List/Set/Map ADTs
« Methods / APIs
 ArrayList impl. of List
« HashMap impl. of Map (hash tables) using ArrayList for buckets
 .equals/.hashcode contract
« Efficiency of implementation’s methods, e.g., of .contains

« Asymptotic Analysis / Runtime Efficiency
« Big O notation
« Analyze runtime of code snippets with respect to parameter size

https://www.buzzfeed.com/maitlandquitmeyer/gift-wrap-ideas-that-are-almost-too-pretty-to-tear-
apart?utm_term=.dydzwPbor&sub=4413758_10120650

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 7

HashMap methods at a high level

Always start by getting the hash =

Math.abs(key.hashCode()) % list.size()

Absolute value and % (remainder when

dividing by) list size ensures valid index

* put(key, value)

« Add <key, value> pair to “bucket” (list) at
index hash if existing pair with same key

« Otherwise replace existing pair with given
value

e get(key)
» Return value paired with key in bucket at

index hash (or return null’if no such pair)

* containsKey(key)
« Check if key exists in bucket at index hash

1/31/24 CompSci 201, Spring 2024, Hashing

(%]
1 <“hi”, 5>
<“fain”, 104>
2
3
4 <“ok”, 3>
5
6
7

Revisiting Hashing Efficiency

« Runtime of get (), put (), Constant, does not depend on
and containsKey() number of pairs in Map

= Time to get the hash YT

+ Time to search o l
‘bucket” by calling .equals()
on everything in the bucket

Depends on number of pairs SR -
per bucket

= HashMaps are faster with
more buckets

1/31/24 CompSci 201, Spring 2024, Hashing 10

Simple uniform hashing
assumption (SUHA)

« Suppose we hash N pairs to M buckets.

 Simple uniform hashing assumption:

Any element (i.e., key for HashMap, value for HashSeE) IS
equally likely to hash into any bucket, independently o
where any other element hashes to. [CLRS]

 Probability any two unequal elements hash into the
same bucket: 1/M
« Spread of pairs to buckets looks random (but is not).
« Ways to design such hash functions, not today

« We make this assumption to analyze efficiency in theory,
can verify runtime performance in practice

Implications of SUHA

» Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

e Stronger statements are true: Very high probability
that any bucket has approximately N/M pairs.

Constant, does not depend on N or M.

* Runtime implication?
* Time to get the hash
* Time to search over the "bucket” at hash index
« Calling .equals() on everything in the bucket

Expect ~ N/M pairs to search

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 12

Memory/Runtime Tradeoff

* N pairs, M buckets, assuming SUHA / good hashCode ()

e Case 1: N >>M — too many pairs in too few buckets
« Runtime inefficient

« Case 2: M >> N — too many buckets, not many pairs
« Runtime efficient, NOT memory efficient

 Case 3: M slightly larger than N — sweet spot

« Runtime efficient, memory usage slightly more than
an array/ArraylList

Load Factor and HashMap Growth
* N pairs, M buckets

e | oad factor = maximum N/M ratio allowed
e Java defaultis 0.75

« Whenever N/M exceeds the load factor?
 Create a new larger table, rehash/copy everything
* Double the size, just like ArrayList!
« Geometric growth pattern for amortized efficiency
» Called resizing

Hash table resizing

jshell> Math.abs("cs".hashCode()) % 4

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>

$15 ==> 0 0
jshell> Math.abs("hi".hashCode()) % 4
$16 ==> 1
jshell> Math.abs("ok".hashCode()) % 4 1
$17 ==> 0
jshell> Math.abs("cs".hashCode()) % 8
$19 ==> 0 2
jshell> Math.abs("hi".hashCode()) % 8
$20 ==> 1 3
jshell> Math.abs("ok".hashCode()) % 8
$21 ==> 4
4
0 <“cs”, 201>
<“ok”, 3>
1 5
<hi”, 5>
2 6
3 7

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency

15

WOTO
(Go to duke.is/v/syyy

w o

Not graded for
correctness, just
participation.

Try to answer without
looking back at slides
and notes.

But do talk to your
neighbors!

https://duke.is/v/syyy

2. Which methods must be correctly implemented in order for a HashSet/HashMap
to function correctly? Select all that apply. * [T}

{mualst} for the key objects

D equals() for the value objects

%ash(ﬁude(} for the key objects

D hashCode() for the value objects

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 17

3. Suppose you store one million (1,000,000) Keys in a HashSet where the hashCode()
of all the keys returns 0 but none of the keys are equal to each other (according to
equals()). What would you expect when calling contains() on the HashSet? * [T}

O Incorrect behavior, returning the wrong value

O Correct and efficient behavior, constant time

%orred and inefficient behavior, comparable to contains in ArrayList

O None of the above

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 18

4. Suppose a HashSet/Map performs a resizing operation to double the number of
buckets every time it reaches a load factor of 1. Assume a good implementation of
hashCode() for the keys / the simple uniform hashing assumption. When
performing N add/put operations with unique keys, the best characterization of
the runtime complexity of add/putis... * [T}

O Constant time
O Amortized constant time

O Expected constant time

%mortized expected constant time

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 19

Revisiting guarantees

public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, Serializable

This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as to the iteration order of the set; in particular, it does not guarantee that the order will remain
constant over time. This class permits the null element.

This class offers constant time performance for the basic operations (add, remove, contains and size),
assuming the hash function disperses the elements properly among the buckets. Iterating over this set
requires time proportional to the sum of the HashSet instance's size (the number of elements) plus the
“capacity" of the backing HashMap instance (the number of buckets). Thus, it's very important not to set the
initial capacity too high (or the load factor too low) if iteration performance is important.

Java APl documentation

Constant amortized time operations in
expectation under SUHA (practically: assuming
the hash function distributes unequal keys).

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 20

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

Runtime Efficiency, an
Empirical Look at
String Concatenation

Two methods for repeated
concatenation

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String();

21 for (int 1=0; i<reps; i++) {

22 1t += ; : .

>) result += totoncat; methodA: Using String
” return result: object and basic + operator
25 }

27 public static String repeatConcatB(int reps, String toConcat) {
28 StringBuilder result = new StringBuilder();

29 for (int 1=0; i<reps; i++) {

30 result.append(toConcat);

31 } methodB: Using

32 return result.toStringQ); StringBuilder object
33 ¥ and append method

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 22

-mpirical timing experiment

Can see the code on GitLab here.

uvi W NP

O o N O

10
11
12
13
14
15
16
17

2/5/24

public class StringConcatTiming { static final used for

}

static final int NUM_TRIALS = 100;
static final int REPS_PER_TRIAL = 1024;
static final String TO_CONCAT = "201";

constants here

Run | Debug
public static void main(String[] args) {
long totalTime = 0;
for (int trial=0; trial<NUM_TRIALS; trial++) {

long startTime = System.nanoTime(); _ .
//repeatConcatACREPS_PER_TRIAL, TO_CONCAT); Going to time
repeatConcatB(REPS_PER_TRIAL, TO_CONCAT); both methods
long endTime = System.nanoTime(); separately.

totalTime += (endTime - startTime);

double avgTime = (double)totalTime / NUM_TRIALS;
System.out.printf("Avg time per trial is %f ms", avgTime*1E-6);

CompSci 201, Spring 2024, Runtime Efficiency 23

https://coursework.cs.duke.edu/cs-201-spring-23/stringconcattiming

-mpirical results

160
140

S

m
—
o N
o O

——-MethodA [String] (ms)

0
-

—-—MethodB
[StringBuilder] (ms)

N
-

Average runtime in
(@)
O

N
o O

1024 2048 4096 8192 1638432/68
Number of String concat reps

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 24

-mpirical results in more detail

MethodA (ms)MethodB (ms)

1024 0.384 0.050
2048 1.136 0.061
4096 3.443 0.077
8192 12.244 0.099
16384 41.754 0.143
32768 147.719 0.207

Multiply reps by 2 multiplies runtime
by ~2. Linear complexity.

Multiply reps by 2 multiplies runtime
by 4. Quadratic complexity.

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 25

-mpirical results in more detail

_ MethodA MethodB
Reps ns/rep ns/rep

1024 0.375 0.048
2048 0.555 0.030
4096 0.841 0.019
8192 1.495 0.012
16384 2.548 0.009
32768 4.508 0.006

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 26

What's going on? Documentation?

docs.oracle.com/en/java/javase/17//docs/a
pi/java.base/java/lang/String

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object

implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented ¢

[Strings are constant; their values cannot be changed after they are Created.]String buffers support mutable strings.

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 27

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

methodA revisited

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String();
21 for (int 1=0; 1i<reps; i++) {

22 result += toConcat; String is immutable; line 22
23 } creates a new string and
24 return result; copies result then toConcat.
25 }

How many characters will be copied per iteration if
toConcatis “201”7?

e =0: 3
=1:6
1=2:9

1:
2

On iteration i, need to copy 3*(i+1) characters!

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 28

How many total characters are
copied? Algebral

methodA: for i from @ to reps-1,
copy 3*(i+1) characters per iteration.

reps—1 reps—1
Z 3(i+1)=3(reps)+3(2 i)

=0 =0

re
b>)(O+reps—1)

= 3(reps) + 3(>

Arithmetic series formula:
n

3
— E (repsz —I— repS) z a; = (g) (Cl1 + Cln)

=1

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 29

Abstracting, Intro to Big O
Notation (Preview for next time)

* The 3/2in %repsz doesn't tell us much about

how the performance scales with the size of
reps.

 Often, we use asymptotic notation, especially Big
O notation to abstract away constants.

« For example: Let N = reps, then we say that the
asymptotic runtime complexity is O(N2).
* |f you ~double N, you ~quadruple the runtime

Two general Big O rules

1. Can drop constants
« 2N+3 = O(N)
« 0.00TN + 1,000,000 = O(N)

2. Can drop lower order terms
« 2N?+3N = O(2N?) = O(N?)
« N+log(N) = O(N)
« 2N+ N2 = O(2N)

Hierarchy of some common
complexity classes

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N?) Quadratic Loop over all pairs from N
things

O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 32

t
t

How does StringBuilder work?

"Every string builder has a capacity. As long as

ne length of the character sequence contained in
ne string builder does not exceed the capacity, it

IS not necessary to allocate a new internal buffer.
If the internal buffer overflows, it is automatically
made larger.” - StringBuilder JDK 17/
documentation.

But how does it grow?

Geometrically! Like ArrayList, HashMap, ...
o Still linear amortized complexity, for same reasons

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

StringBuilder is like an ArrayList of
characters

* SUppoOSse we run the code:

StringBuilder() sb = new StringBuilder(3);
sb.append(“hi”);
sb.append(“ya”); Initial

buffer/array
capacity

Array representing StringBuilder

Yy h i 'y a

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 34

How many total characters are
copied with a StringBuilder?

Suppose we

e start with capacity 3,

« append a length 3 string reps times, and
 double when out of capacity.

~log, (3-reps)
3 -reps + Z 2! = 3 -reps + 6 - reps
From

. =0
The "good
case” copies
doubling and

= 0. reps copying the
array

Geometric series formula:

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 35

Memory/Runtime Tradeoff

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder();

29 for (int 1=0; i<reps; i++) {

30 result.append(toConcat);

31 }

32 System.out.printf("String builder capacity is %d characters¥%n", result.capacity());
33 System.out.printf("Result length is %d characters¥n", result.length());

34 return result.toString();

35 }

PROBLEMS (4 OUTPUT DEBUG CONSOLE TERMINAL

String builder capacity is 147454 characters
Result length 1s 98304 characters

Final StringBuilder is using about 146k / 98k ~=
1.5 times as much memory as necessary. Very
common tradeoft in data structures!

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 36

What's the real difference between
methodA and methodB?

« methodA: Copies roughly g (reps? — reps)
» methodB: copies roughly 9 - reps characters.

Reps ~MethodA char MethodB char
copies (millions) | copies (millions)

1000 1.5 0.009
2000 6 0.018
4000 24 0.036
8000 95 0.072
16000 383 0.144
32000 1535 0.288

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 37

WOTO
Go to duke.is/m/pm9u

i

Not graded for
correctness, just
participation.

Try to answer
without looking back
at slides and notes.

But do talk to your
neighbors!

https://duke.is/m/pm9u

2

How many total characters must be
copied by the code on lines 8 and 97
Remember that Strings are immutable
inJava. * [T}

7
8
9

String s = "hi";

s += "hey";
S += S;

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency

39

3

Suppose method A has linear complexity and takes 10 ms to run on an input of

size N. About what would you expect the runtime to be for an input of size 2*N?

*
<)

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 40

4

Suppose method B has quadratic complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input of
size 2*N? * [T]

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 47

Here is another String concatenation method. Suppose the input string s has a
small number of characters, say 3. As a function of the parameter reps, how

would you characterize the runtime complexity of the method? Hint: As a
function of reps, how many total characters will be copied across all iterations of

the loop? * [T}

7 public static String concatAlot(int reps, Str
8 for (int 1=0; i<reps; i++) {

9 S += S;

10 }

11 return s;

12 }

O Constant
O Linear

O Quadratic

%xpo nential

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency

42

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Midterm Exams
	Slide 4: Exam Grades and Missing Exams
	Slide 5: Midterm 1 Material/Concepts
	Slide 6: Midterm 1 Material/Concepts
	Slide 7: Wrapping up Maps
	Slide 8: HashMap methods at a high level
	Slide 10: Revisiting Hashing Efficiency
	Slide 11: Simple uniform hashing assumption (SUHA)
	Slide 12: Implications of SUHA
	Slide 13: Memory/Runtime Tradeoff
	Slide 14: Load Factor and HashMap Growth
	Slide 15: Hash table resizing
	Slide 16: WOTO
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Revisiting guarantees
	Slide 21: Runtime Efficiency, an Empirical Look at String Concatenation
	Slide 22: Two methods for repeated concatenation
	Slide 23: Empirical timing experiment
	Slide 24: Empirical results
	Slide 25: Empirical results in more detail
	Slide 26: Empirical results in more detail
	Slide 27: What’s going on? Documentation?
	Slide 28: methodA revisited
	Slide 29: How many total characters are copied? Algebra!
	Slide 30: Abstracting, Intro to Big O Notation (Preview for next time)
	Slide 31: Two general Big O rules
	Slide 32: Hierarchy of some common complexity classes
	Slide 33: How does StringBuilder work?
	Slide 34: StringBuilder is like an ArrayList of characters
	Slide 35: How many total characters are copied with a StringBuilder?
	Slide 36: Memory/Runtime Tradeoff
	Slide 37: What’s the real difference between methodA and methodB?
	Slide 38: WOTO
	Slide 39
	Slide 40
	Slide 41
	Slide 42

