
2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 1

L7: Runtime Efficiency
Alex Steiger

CompSci 201: Spring 2024

2/5/24

Logistics, Coming up

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 2

• Today 2/6
• Project 1 NBody due today

• Project 2 Markov releasing tomorrow (due in 2 weeks)

• Wednesday 2/8
• APT 3 due

• Next Monday 2/13
• Midterm Exam 1

• Covers everything through THIS week, up to and
including asymptotic analysis / Big O

• Example/Practice exams available this evening

Midterm Exams

See details on course website assignments and
grading page

• 60 minutes, in-class exam

• Multiple choice + short answer

• Reason about algorithms, data structures, code.

• Can bring 1 double sided reference sheet
(8.5x11 in), write/type whatever notes you like.

• No electronic devices out during exam

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 3

https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/
https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/

Exam Grades and Missing Exams

• Three midterm exams scheduled: (E1, E2, E3)

• Final exam has 3 corresponding parts: (F1, F2, F3)
• Worth 11% of grade

• Overall exam grade has four exam parts
• Part 1, Part 2, Part 3, Final: 11% each
• Part i grade: max(Ei, Fi)

• Meaning the final exam serves in part:
• As a makeup, if you need to miss a midterm, and/or
• As an opportunity to demonstrate more learning, if

you’re unhappy with your midterm score.

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 4

Midterm 1 Material/Concepts

• Lectures 1-8
• WOTO answers being added to early slides tonight

• Discussion 1-4
• Solutions to documents on schedule since D1

• Project 0, Project 1

• APT 1-3, required problems
• Optional/challenge not expected, but great practice

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 5

Midterm 1 Material/Concepts
• Java

• Methods (return types, parameters)
• Classes/Objects (instance variables, constructors)
• Primitive types (e.g., int, double,…) vs. primitive types (e.g., Integer, Double,

String, [any class])
• Immutability (e.g. of primitive types and Strings)
• Static vs. non-static
• Overriding methods (e.g., .equals, .hashcode, .toString)

• List/Set/Map ADTs
• Methods / APIs
• ArrayList impl. of List
• HashMap impl. of Map (hash tables) using ArrayList for buckets

• .equals/.hashcode contract
• Efficiency of implementation’s methods, e.g., of .contains

• Asymptotic Analysis / Runtime Efficiency
• Big O notation
• Analyze runtime of code snippets with respect to parameter size

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 6

Wrapping
up Maps

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 7

https://www.buzzfeed.com/maitlandquitmeyer/gift-wrap-ideas-that-are-almost-too-pretty-to-tear-
apart?utm_term=.dydzwPbor&sub=4413758_10120650

HashMap methods at a high level
Always start by getting the hash =

• put(key, value)
• Add <key,value> pair to “bucket” (list) at

index hash if existing pair with same key
• Otherwise replace existing pair with given
value

• get(key)
• Return value paired with key in bucket at

index hash (or return null if no such pair)

• containsKey(key)
• Check if key exists in bucket at index hash

1/31/24 CompSci 201, Spring 2024, Hashing 8

0

1 <“hi”, 5>

2

3

4 <“ok”, 3>

5

6

7

Absolute value and % (remainder when
dividing by) list size ensures valid index

Math.abs(key.hashCode()) % list.size()

<“fain”, 104>

Revisiting Hashing Efficiency

• Runtime of get(), put(),
and containsKey()

= Time to get the hash

+ Time to search
“bucket” by calling .equals()
on everything in the bucket

⇒ HashMaps are faster with
more buckets

1/31/24 CompSci 201, Spring 2024, Hashing 10

Constant, does not depend on
number of pairs in Map

Depends on number of pairs
per bucket

Simple uniform hashing
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption:
Any element (i.e., key for HashMap, value for HashSet) is
equally likely to hash into any bucket, independently of
where any other element hashes to. [CLRS]

• Probability any two unequal elements hash into the
same bucket: 1/M
• Spread of pairs to buckets looks random (but is not).
• Ways to design such hash functions, not today
• We make this assumption to analyze efficiency in theory,

can verify runtime performance in practice

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 11

Implications of SUHA

• Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

• Stronger statements are true: Very high probability
that any bucket has approximately N/M pairs.

• Runtime implication?

• Time to get the hash

• Time to search over the “bucket” at hash index

• Calling .equals() on everything in the bucket

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 12

Constant, does not depend on N or M.

Expect ~ N/M pairs to search

Memory/Runtime Tradeoff

• N pairs, M buckets, assuming SUHA / good hashCode()

• Case 1: N >> M – too many pairs in too few buckets

• Runtime inefficient

• Case 2: M >> N – too many buckets, not many pairs

• Runtime efficient, NOT memory efficient

• Case 3: M slightly larger than N – sweet spot

• Runtime efficient, memory usage slightly more than
an array/ArrayList

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 13

Load Factor and HashMap Growth

• N pairs, M buckets

• Load factor = maximum N/M ratio allowed
• Java default is 0.75

• Whenever N/M exceeds the load factor?
• Create a new larger table, rehash/copy everything

• Double the size, just like ArrayList!

• Geometric growth pattern for amortized efficiency

• Called resizing

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 14

Hash table resizing

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 15

0

1

2

3

4

5

6

7

0

1

2

3

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>
Resizing

WOTO
Go to duke.is/v/syyy

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 16

Not graded for
correctness, just
participation.

Try to answer without
looking back at slides
and notes.

But do talk to your
neighbors!

https://duke.is/v/syyy

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 17

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 18

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 19

Revisiting guarantees

Constant amortized time operations in
expectation under SUHA (practically: assuming
the hash function distributes unequal keys).

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 20

Java API documentation

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

Runtime Efficiency, an
Empirical Look at
String Concatenation

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 21

Two methods for repeated
concatenation

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 22

methodA: Using String
object and basic + operator

methodB: Using
StringBuilder object

and append method

Empirical timing experiment

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 23

static final used for
constants here

Going to time
both methods

separately.

Can see the code on GitLab here.

https://coursework.cs.duke.edu/cs-201-spring-23/stringconcattiming

Empirical results

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 24

0

20

40

60

80

100

120

140

160

1024 2048 4096 8192 16384 32768

A
ve

ra
g

e
 r

u
n

ti
m

e
 in

 m
s

Number of String concat reps

MethodA [String] (ms)

MethodB
[StringBuilder] (ms)

Empirical results in more detail

Reps MethodA (ms)MethodB (ms)

1024 0.384 0.050

2048 1.136 0.061

4096 3.443 0.077

8192 12.244 0.099

16384 41.754 0.143

32768 147.719 0.207

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 25

Multiply reps by 2 multiplies runtime
by 4. Quadratic complexity.

Multiply reps by 2 multiplies runtime
by ~2. Linear complexity.

Empirical results in more detail

Reps
MethodA
ns/rep

MethodB
ns/rep

1024 0.375 0.048

2048 0.555 0.030

4096 0.841 0.019

8192 1.495 0.012

16384 2.548 0.009

32768 4.508 0.006

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 26

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

What’s going on? Documentation?

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 27

docs.oracle.com/en/java/javase/17/docs/a
pi/java.base/java/lang/String

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

methodA revisited

How many characters will be copied per iteration if
toConcat is “201”?
• i=0: 3
• i=1: 6
• i=2: 9
• …
• On iteration i, need to copy 3*(i+1) characters!

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 28

String is immutable; line 22
creates a new string and

copies result then toConcat.

How many total characters are
copied? Algebra!

methodA: for i from 0 to reps-1,
copy 3*(i+1) characters per iteration.

෍

𝑖=0

reps−1

3(i + 1) = 3(reps) + 3 ෍

𝑖=0

reps−1

i

= 3(reps) + 3
reps

2
0 + reps − 1

=
3

2
(reps2 + reps)

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 29

Arithmetic series formula:

෍

𝑖=1

𝑛

𝑎𝑖 =
𝑛

2
𝑎1 + 𝑎𝑛

Abstracting, Intro to Big O
Notation (Preview for next time)

• The 3/2 in
3

2
reps2 doesn’t tell us much about

how the performance scales with the size of
reps.

• Often, we use asymptotic notation, especially Big
O notation to abstract away constants.

• For example: Let N = reps, then we say that the
asymptotic runtime complexity is O(N2).
• If you ~double N, you ~quadruple the runtime

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 30

Two general Big O rules

1. Can drop constants

• 2N+3 ⇒ O(N)

• 0.001N + 1,000,000 ⇒ O(N)

2. Can drop lower order terms

• 2N2+3N ⇒ O(2N2) ⇒ O(N2)

• N+log(N) ⇒ O(N)

• 2N + N2 ⇒ O(2N)

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 31

Hierarchy of some common
complexity classes

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 32

Big O Name Example

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N2) Quadratic Loop over all pairs from N
things

O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

How does StringBuilder work?

“Every string builder has a capacity. As long as
the length of the character sequence contained in
the string builder does not exceed the capacity, it
is not necessary to allocate a new internal buffer.
If the internal buffer overflows, it is automatically
made larger.” - StringBuilder JDK 17
documentation.

• But how does it grow?

• Geometrically! Like ArrayList, HashMap, …
• Still linear amortized complexity, for same reasons

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 33

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

StringBuilder is like an ArrayList of
characters

• Suppose we run the code:

StringBuilder() sb = new StringBuilder(3);

sb.append(“hi”);

sb.append(“ya”);

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 34

Array representing StringBuilder

h i y h i y a

Initial
buffer/array

capacity

How many total characters are
copied with a StringBuilder?

Suppose we

• start with capacity 3,

• append a length 3 string reps times, and

• double when out of capacity.

3 ⋅ reps + ෍

𝑖=0

≈log2 3⋅reps

2𝑖 = 3 ⋅ reps + 6 ⋅ reps

= 9 ⋅ reps

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 35

Geometric series formula:

෍

𝑖=0

𝑛

𝑎 𝑟𝑖 = 𝑎(
1 − 𝑟𝑛+1

1 − 𝑟
)

The “good
case” copies

From
doubling and
copying the

array

Memory/Runtime Tradeoff

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 36

Final StringBuilder is using about 146k / 98k ~=
1.5 times as much memory as necessary. Very
common tradeoff in data structures!

What’s the real difference between
methodA and methodB?

• methodA: Copies roughly
3

2
reps2 − reps

• methodB: copies roughly 9 ⋅ reps characters.

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 37

Reps ~MethodA char
copies (millions)

MethodB char
copies (millions)

1000 1.5 0.009

2000 6 0.018

4000 24 0.036

8000 95 0.072

16000 383 0.144

32000 1535 0.288

WOTO
Go to duke.is/m/pm9u

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 38

Not graded for
correctness, just
participation.

Try to answer
without looking back
at slides and notes.

But do talk to your
neighbors!

https://duke.is/m/pm9u

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 39

🗸

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 40

🗸

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 41

🗸

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 42

🗸

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Midterm Exams
	Slide 4: Exam Grades and Missing Exams
	Slide 5: Midterm 1 Material/Concepts
	Slide 6: Midterm 1 Material/Concepts
	Slide 7: Wrapping up Maps
	Slide 8: HashMap methods at a high level
	Slide 10: Revisiting Hashing Efficiency
	Slide 11: Simple uniform hashing assumption (SUHA)
	Slide 12: Implications of SUHA
	Slide 13: Memory/Runtime Tradeoff
	Slide 14: Load Factor and HashMap Growth
	Slide 15: Hash table resizing
	Slide 16: WOTO
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Revisiting guarantees
	Slide 21: Runtime Efficiency, an Empirical Look at String Concatenation
	Slide 22: Two methods for repeated concatenation
	Slide 23: Empirical timing experiment
	Slide 24: Empirical results
	Slide 25: Empirical results in more detail
	Slide 26: Empirical results in more detail
	Slide 27: What’s going on? Documentation?
	Slide 28: methodA revisited
	Slide 29: How many total characters are copied? Algebra!
	Slide 30: Abstracting, Intro to Big O Notation (Preview for next time)
	Slide 31: Two general Big O rules
	Slide 32: Hierarchy of some common complexity classes
	Slide 33: How does StringBuilder work?
	Slide 34: StringBuilder is like an ArrayList of characters
	Slide 35: How many total characters are copied with a StringBuilder?
	Slide 36: Memory/Runtime Tradeoff
	Slide 37: What’s the real difference between methodA and methodB?
	Slide 38: WOTO
	Slide 39
	Slide 40
	Slide 41
	Slide 42

