
2/6/2024

1

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 1

L7: Runtime Efficiency
Alex Steiger

CompSci 201: Spring 2024

2/5/24

Logistics, Coming up

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 2

• Today 2/6
• Project 1 NBody due today

• Project 2 Markov releasing tomorrow (due in 2 weeks)

• Wednesday 2/8
• APT 3 due

• Next Monday 2/13
• Midterm Exam 1

• Covers everything through THIS week, up to and
including asymptotic analysis / Big O

• Example/Practice exams available this evening

Midterm Exams

See details on course website assignments and
grading page

• 60 minutes, in-class exam

• Multiple choice + short answer

• Reason about algorithms, data structures, code.

• Can bring 1 double sided reference sheet
(8.5x11 in), write/type whatever notes you like.

• No electronic devices out during exam

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 3

1

2

3

https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/
https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/

2/6/2024

2

Exam Grades and Missing Exams

• Three midterm exams scheduled: (E1, E2, E3)

• Final exam has 3 corresponding parts: (F1, F2, F3)
• Worth 11% of grade

• Overall exam grade has four exam parts
• Part 1, Part 2, Part 3, Final: 11% each
• Part i grade: max(Ei, Fi)

• Meaning the final exam serves in part:
• As a makeup, if you need to miss a midterm, and/or
• As an opportunity to demonstrate more learning, if

you’re unhappy with your midterm score.

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 4

Midterm 1 Material/Concepts

• Lectures 1-8
• WOTO answers being added to early slides tonight

• Discussion 1-4
• Solutions to documents on schedule since D1

• Project 0, Project 1

• APT 1-3, required problems
• Optional/challenge not expected, but great practice

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 5

Midterm 1 Material/Concepts
• Java

• Methods (return types, parameters)
• Classes/Objects (instance variables, constructors)
• Primitive types (e.g., int, double,…) vs. primitive types (e.g., Integer, Double,

String, [any class])
• Immutability (e.g. of primitive types and Strings)
• Static vs. non-static
• Overriding methods (e.g., .equals, .hashcode, .toString)

• List/Set/Map ADTs
• Methods / APIs
• ArrayList impl. of List
• HashMap impl. of Map (hash tables) using ArrayList for buckets

• .equals/.hashcode contract
• Efficiency of implementation’s methods, e.g., of .contains

• Asymptotic Analysis / Runtime Efficiency
• Big O notation
• Analyze runtime of code snippets with respect to parameter size

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 6

4

5

6

2/6/2024

3

Wrapping
up Maps

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 7

https://www.buzzfeed.com/maitlandquitmeyer/gift-wrap-ideas-that-are-almost-too-pretty-to-tear-
apart?utm_term=.dydzwPbor&sub=4413758_10120650

HashMap methods at a high level
Always start by getting the hash =

• put(key, value)
• Add <key,value> pair to “bucket” (list) at

index hash if existing pair with same key
• Otherwise replace existing pair with given
value

• get(key)
• Return value paired with key in bucket at

index hash (or return null if no such pair)

• containsKey(key)
• Check if key exists in bucket at index hash

1/31/24 CompSci 201, Spring 2024, Hashing 8

0

1 <“hi”, 5>

2

3

4 <“ok”, 3>

5

6

7

Absolute value and % (remainder when
dividing by) list size ensures valid index

Math.abs(key.hashCode()) % list.size()

<“fain”, 104>

Revisiting Hashing Efficiency

• Runtime of get(), put(),
and containsKey()

= Time to get the hash

+ Time to search
“bucket” by calling .equals()
on everything in the bucket

⇒ HashMaps are faster with
more buckets

1/31/24 CompSci 201, Spring 2024, Hashing 10

Constant, does not depend on
number of pairs in Map

Depends on number of pairs
per bucket

7

8

10

2/6/2024

4

Simple uniform hashing
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption:
Any element (i.e., key for HashMap, value for HashSet) is
equally likely to hash into any bucket, independently of
where any other element hashes to. [CLRS]

• Probability any two unequal elements hash into the
same bucket: 1/M
• Spread of pairs to buckets looks random (but is not).
• Ways to design such hash functions, not today
• We make this assumption to analyze efficiency in theory,

can verify runtime performance in practice

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 11

Implications of SUHA

• Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

• Stronger statements are true: Very high probability
that any bucket has approximately N/M pairs.

• Runtime implication?

• Time to get the hash

• Time to search over the “bucket” at hash index

• Calling .equals() on everything in the bucket

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 12

Constant, does not depend on N or M.

Expect ~ N/M pairs to search

Memory/Runtime Tradeoff

• N pairs, M buckets, assuming SUHA / good hashCode()

• Case 1: N >> M – too many pairs in too few buckets

• Runtime inefficient

• Case 2: M >> N – too many buckets, not many pairs

• Runtime efficient, NOT memory efficient

• Case 3: M slightly larger than N – sweet spot

• Runtime efficient, memory usage slightly more than
an array/ArrayList

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 13

11

12

13

2/6/2024

5

Load Factor and HashMap Growth

• N pairs, M buckets

• Load factor = maximum N/M ratio allowed
• Java default is 0.75

• Whenever N/M exceeds the load factor?
• Create a new larger table, rehash/copy everything

• Double the size, just like ArrayList!

• Geometric growth pattern for amortized efficiency

• Called resizing

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 14

Hash table resizing

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 15

0

1

2

3

4

5

6

7

0

1

2

3

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>
Resizing

WOTO
Go to duke.is/v/syyy

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 16

Not graded for
correctness, just
participation.

Try to answer without
looking back at slides
and notes.

But do talk to your
neighbors!

14

15

16

https://duke.is/v/syyy

2/6/2024

6

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 17

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 18

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 19

17

18

19

2/6/2024

7

Revisiting guarantees

Constant amortized time operations in
expectation under SUHA (practically: assuming
the hash function distributes unequal keys).

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 20

Java API documentation

Runtime Efficiency, an
Empirical Look at
String Concatenation

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 21

Two methods for repeated
concatenation

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 22

methodA: Using String
object and basic + operator

methodB: Using
StringBuilder object

and append method

20

21

22

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

2/6/2024

8

Empirical timing experiment

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 23

static final used for
constants here

Going to time
both methods

separately.

Can see the code on GitLab here.

Empirical results

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 24

0

20

40

60

80

100

120

140

160

1024 2048 4096 8192 16384 32768

A
ve

ra
g

e
 r

u
n

ti
m

e
 in

 m
s

Number of String concat reps

MethodA [String] (ms)

MethodB
[StringBuilder] (ms)

Empirical results in more detail

Reps MethodA (ms)MethodB (ms)

1024 0.384 0.050

2048 1.136 0.061

4096 3.443 0.077

8192 12.244 0.099

16384 41.754 0.143

32768 147.719 0.207

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 25

Multiply reps by 2 multiplies runtime
by 4. Quadratic complexity.

Multiply reps by 2 multiplies runtime
by ~2. Linear complexity.

23

24

25

https://coursework.cs.duke.edu/cs-201-spring-23/stringconcattiming

2/6/2024

9

Empirical results in more detail

Reps
MethodA
ns/rep

MethodB
ns/rep

1024 0.375 0.048

2048 0.555 0.030

4096 0.841 0.019

8192 1.495 0.012

16384 2.548 0.009

32768 4.508 0.006

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 26

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

What’s going on? Documentation?

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 27

docs.oracle.com/en/java/javase/17/docs/a
pi/java.base/java/lang/String

methodA revisited

How many characters will be copied per iteration if
toConcat is “201”?
• i=0: 3
• i=1: 6
• i=2: 9
• …
• On iteration i, need to copy 3*(i+1) characters!

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 28

String is immutable; line 22
creates a new string and

copies result then toConcat.

26

27

28

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

2/6/2024

10

How many total characters are
copied? Algebra!

methodA: for i from 0 to reps-1,
copy 3*(i+1) characters per iteration.

෍

𝑖=0

reps−1

3(i + 1) = 3(reps) + 3 ෍

𝑖=0

reps−1

i

= 3(reps) + 3
reps

2
0 + reps − 1

=
3

2
(reps2 + reps)

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 29

Arithmetic series formula:

෍

𝑖=1

𝑛

𝑎𝑖 =
𝑛

2
𝑎1 + 𝑎𝑛

Abstracting, Intro to Big O
Notation (Preview for next time)

• The 3/2 in
3

2
reps2 doesn’t tell us much about

how the performance scales with the size of
reps.

• Often, we use asymptotic notation, especially Big
O notation to abstract away constants.

• For example: Let N = reps, then we say that the
asymptotic runtime complexity is O(N2).
• If you ~double N, you ~quadruple the runtime

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 30

Two general Big O rules

1. Can drop constants

• 2N+3 ⇒ O(N)

• 0.001N + 1,000,000 ⇒ O(N)

2. Can drop lower order terms

• 2N2+3N ⇒ O(2N2) ⇒ O(N2)

• N+log(N) ⇒ O(N)

• 2N + N2 ⇒ O(2N)

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 31

29

30

31

2/6/2024

11

Hierarchy of some common
complexity classes

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 32

Big O Name Example

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N2) Quadratic Loop over all pairs from N
things

O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

How does StringBuilder work?

“Every string builder has a capacity. As long as
the length of the character sequence contained in
the string builder does not exceed the capacity, it
is not necessary to allocate a new internal buffer.
If the internal buffer overflows, it is automatically
made larger.” - StringBuilder JDK 17
documentation.

• But how does it grow?

• Geometrically! Like ArrayList, HashMap, …
• Still linear amortized complexity, for same reasons

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 33

StringBuilder is like an ArrayList of
characters

• Suppose we run the code:

StringBuilder() sb = new StringBuilder(3);

sb.append(“hi”);

sb.append(“ya”);

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 34

Array representing StringBuilder

h i y h i y a

Initial
buffer/array

capacity

32

33

34

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

2/6/2024

12

How many total characters are
copied with a StringBuilder?

Suppose we

• start with capacity 3,

• append a length 3 string reps times, and

• double when out of capacity.

3 ⋅ reps + ෍

𝑖=0

≈log2 3⋅reps

2𝑖 = 3 ⋅ reps + 6 ⋅ reps

= 9 ⋅ reps

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 35

Geometric series formula:

෍

𝑖=0

𝑛

𝑎 𝑟𝑖 = 𝑎(
1 − 𝑟𝑛+1

1 − 𝑟
)

The “good
case” copies

From
doubling and
copying the

array

Memory/Runtime Tradeoff

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 36

Final StringBuilder is using about 146k / 98k ~=
1.5 times as much memory as necessary. Very
common tradeoff in data structures!

What’s the real difference between
methodA and methodB?

• methodA: Copies roughly
3

2
reps2 − reps

• methodB: copies roughly 9 ⋅ reps characters.

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 37

Reps ~MethodA char
copies (millions)

MethodB char
copies (millions)

1000 1.5 0.009

2000 6 0.018

4000 24 0.036

8000 95 0.072

16000 383 0.144

32000 1535 0.288

35

36

37

2/6/2024

13

WOTO
Go to duke.is/m/pm9u

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 38

Not graded for
correctness, just
participation.

Try to answer
without looking back
at slides and notes.

But do talk to your
neighbors!

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 39

🗸

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 40

🗸

38

39

40

https://duke.is/m/pm9u

2/6/2024

14

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 41

🗸

2/5/24 CompSci 201, Spring 2024, Runtime Efficiency 42

🗸

41

42

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Midterm Exams
	Slide 4: Exam Grades and Missing Exams
	Slide 5: Midterm 1 Material/Concepts
	Slide 6: Midterm 1 Material/Concepts
	Slide 7: Wrapping up Maps
	Slide 8: HashMap methods at a high level
	Slide 10: Revisiting Hashing Efficiency
	Slide 11: Simple uniform hashing assumption (SUHA)
	Slide 12: Implications of SUHA
	Slide 13: Memory/Runtime Tradeoff
	Slide 14: Load Factor and HashMap Growth
	Slide 15: Hash table resizing
	Slide 16: WOTO
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Revisiting guarantees
	Slide 21: Runtime Efficiency, an Empirical Look at String Concatenation
	Slide 22: Two methods for repeated concatenation
	Slide 23: Empirical timing experiment
	Slide 24: Empirical results
	Slide 25: Empirical results in more detail
	Slide 26: Empirical results in more detail
	Slide 27: What’s going on? Documentation?
	Slide 28: methodA revisited
	Slide 29: How many total characters are copied? Algebra!
	Slide 30: Abstracting, Intro to Big O Notation (Preview for next time)
	Slide 31: Two general Big O rules
	Slide 32: Hierarchy of some common complexity classes
	Slide 33: How does StringBuilder work?
	Slide 34: StringBuilder is like an ArrayList of characters
	Slide 35: How many total characters are copied with a StringBuilder?
	Slide 36: Memory/Runtime Tradeoff
	Slide 37: What’s the real difference between methodA and methodB?
	Slide 38: WOTO
	Slide 39
	Slide 40
	Slide 41
	Slide 42

