L7: Runtime Efficiency

Alex Steiger
CompSci 201: Spring 2024
2/5/24

Logistics, Coming up

» Today 2/6
 Project 1 NBody due today
« Project 2 Markov releasing tomorrow (due in 2 weeks)

* Wednesday 2/8
+ APT 3 due

» Next Monday 2/13
« Midterm Exam 1

« Covers everything through THIS week, up to and
including asymptotic analysis / Big O
« Example/Practice exams available this evening

Midterm Exams

See details on course website assignments and
grading page

* 60 minutes, in-class exam

» Multiple choice + short answer

* Reason about algorithms, data structures, code.

« Can bring 1 double sided reference sheet
(8.5x11 in), write/type whatever notes you like.

* No electronic devices out during exam

2/6/2024

https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/
https://sites.duke.edu/compsci_201_001_sp24/assignments-and-grading/

2/6/2024

Exam Grades and Missing Exams

* Three midterm exams scheduled: (E1,E2, E3)

« Final exam has 3 corresponding parts: (F1, F2, F3)
» Worth 11% of grade

» Overall exam grade has four exam parts
* Part 1, Part 2, Part 3, Final: 11% each
« Part i grade: max(Ei, Fi)

» Meaning the final exam serves in part:
» As a makeup, if you need to miss a midterm, and/or
+ As an opportunity to demonstrate more learning, if
you're unhappy with your midterm score.

Midterm 1 Material/Concepts

* Lectures 1-8
» WOTO answers being added to early slides tonight

» Discussion 1-4
« Solutions to documents on schedule since D1

* Project 0, Project 1

* APT 1-3, required problems
+ Optional/challenge not expected, but great practice

Midterm 1 Material/Concepts

 Java
Methods (return types, parameters)
Classes/Objects (instance variables, constructors)

Primitive types (e.g., int, double,...) vs. primitive types (e.g., Integer, Double,
Strmg,fany classﬁ)

Immutability (e.g. of primitive types and Strings)
Static vs. non-static
Overriding methods (e.g., .equals, .hashcode, .toString)

« List/Set/Map ADTs
+ Methods/ APls
« ArrayListimpl. of List
« HashMap impl. of Map (hash tables) using ArrayList for buckets
« .equals/.hashcode contract
« Efficiency of implementation’s methods, e.g., of .contains

+ Asymptotic Analysis / Runtime Efficiency
« Big O notation
« Analyze runtime of code snippets with respect to parameter size

10

Wrapping
up Maps

HashMap methods at a high level
Always start by getting the hash =
Math.abs(key.hashCode()) % list.size()

Absolute value and % (remainder when
dividing by) list size ensures valid index

 put(key, value)
« Add <key, value> pair to “bucket” (list) at |@
index hash if existing pair with same key |1 <«hi”, s>
« Otherwise replace existing pair with given <“fain”, 104>
value
 get(key)
« Return value paired with key in bucket at,
index hash (or return nul1if no such pair)
« containsKey (key)
 Check if key exists in bucket at index hash

<“ok”, 3>

2/6/2024

Nlojuislwn

Revisiting Hashing Efficiency

* Runtime of get (), put(),
and containsKey ()
= Time to get the hash
+ Time to search
“bucket” by calling .equals()
on everything in the bucket

Depends on number of pairs
per bucket

= HashMaps are faster with
more buckets

31/24 CompSci 201, Spring 2024, Hashi

Simple uniform hashing
assumption (SUHA)

* Suppose we hash N pairs to M buckets.

« Simple uniform hashing assumption:
Any element (i.e., key for HashMaE, value for HashSet) is
equally likely to hash into any bucket, independently o
where any other element hashes to. [CLRS]

« Probability any two unequal elements hash into the
same bucket: 1/M
+ Spread of pairs to buckets looks random (but is not).
» Ways to design such hash functions, not today

» We make this assumption to analyze efficiency in theory,
can verify runtime performance in practice

11

Implications of SUHA

» Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

« Stronger statements are true: Very high probability
that any bucket has approximately N/M pairs.

Constant, does not depend on N or M.
* Runtime implication?

» Time to get the hash
 Time to search over the “bucket” at hash index
« Calling .equals() on everything in the bucket

Expect ~ N/M pairs to search

12

Memory/Runtime Tradeoff

* N pairs, M buckets, assuming SUHA / good hashCode()

+ Case 1: N >>M - too many pairs in too few buckets
» Runtime inefficient

» Case2: M >>N - too many buckets, not many pairs
* Runtime efficient, NOT memory efficient

« Case 3: M slightly larger than N — sweet spot
» Runtime efficient, memory usage slightly more than
an array/ArrayList

13

2/6/2024

14

15

16

Load Factor and HashMap Growth

* N pairs, M buckets

« Load factor = maximum N/M ratio allowed
» Java defaultis 0.75

« Whenever N/M exceeds the load factor?
« Create a new larger table, rehash/copy everything

« Double the size, just like ArrayList!

« Geometric growth pattern for amortized efficiency

« Called resizing

Hash table resizing

jshell> Math.abs("cs".hashCode()) % &

515 => @

jshell> Math.abs("hi".hashCade()) % &

§16 ==> 1

jshell> Math.abs("ok".hashCode()) % &
[

$17 =>

jshell> Math.abs("cs".hashCodel)) % &

519 => 0

jshell> Math.abs(*hi".hashCode()) % 8

$28 == 1

jshell> Math.abs("ok".hashCode()) % &

$21 => &

] <“cs”, 201>
<“ok”, 3>

<hi”, 5>

Go to duke.is/v/syyy

[_eeano 4

WOTO

<“cs”, 201>

<*hi”, 5>

<“ok”, 3>

Not graded for
correctness, just

participation.

Try to answer without
looking back at slides

and notes.

But do talk to your

neighbors!

2/6/2024

https://duke.is/v/syyy

2/6/2024

2. Which methods must be correctly implemented in order for a HashSet/HashMap
to function correctly? Select all that apply. * [0

%‘ma\s[) for the key objects
[equalsh for the value objects

{hﬁhcude\‘l for the key objects

[hashCode for the value objects

3. Suppase you store one million (1,000,000 Keys in a HashSet where the hashCode()
of all the keys returns 0 but none of the keys are equal to each other (according to
equals(}). What would you expect when calling contains() on the HashSet? * (T}

) Incorrect behavior, retuming the wrang value

() Correct and efficient behavior, constant time

%Urreﬂ and inefficient behavior, comparable to contains in ArrayList

None of the above

4. Suppose a HashSet/Map performs a resizing operation to double the number of
buckets every time it reaches a load factor of 1. Assume a good implementation of
hashCode() for the keys / the simple uniform hashing assumption. When
performing N add/put operations with unique keys, the best characterization of
the runtime complexity of add/put is.. * [T}

) Constant time

(O Amortized constant time

() Expected constant time

20

21

22

Revisiting guarantees

public class HashSet<E>
extends AbstractSet<E>
inplements Set<E>, Cloneable, Serializable

This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as Lo the iteration order of the set: in particular: it does not guarantee that the order will remain

constant over time. This class permits the null element.

This class offers canstant time performance for the basic operations (add, remove, contains and size),

assuming the hash function disperses the elements properly among the buckets. Iterating over this set

requires time proportional to the sum of the HashSet instance's size (the number of elements) plus the

*capacity” of the backing HashMap instance (the number of bucksts). Thus, it's very important not to set the

initial capacity too high (or the load factor too low) if iteration performance is important.

Java AP d

Constant amortized time operations in
expectation under SUHA (practically: assuming
the hash function distributes unequal keys).

Runtime Efficiency, an
Empirical Look at
String Concatenation

Two methods for repeated
concatenation

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String();
21 for (int i=@; i<reps; i++) {

22 result += toConcat;

;; Ltum result: object and basic + operator
25 1

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder(};

29 for (int i=0; i<reps; i++) {

30 result.append(toConcat);

31 1 methodB: Using

32 return result.toStringQ; StringBuilder object
33 } and append method

2/6/2024

methodA: Using String

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

23

24

25

Empirical timing experiment

Can see the code on GitLab here.

1 public class StringConcatTiming static final used for

2 static f?nal int NUM_TRIALS = 100; constants here
3 static final int REPS_PER_TRIAL = 1024;
4 static final String TO_CONCAT = "201°;
5
un | Debug
6 public static void main(String(] args) {
7 long totalTime = 0;
8 for (int trial=d; trial<NUM_TRIALS; trials+) {
9 long startTime = System.nanoTime();))
10 //repeatConcatACREPS_PER_TRIAL, TO_CONCAT); Going to time
11 repeatConcatB(REPS_PER_TRIAL, TO_CONCAT); both methods
12 long endTime = System.nanoTime(); separately.
13 totalTime += (endTime - startTime);
14 }
15 double avgTime = (double)totalTime / NUM_TRIALS;
16 System.out.printf("Avg time per trial is %f ms”, avgTime*1E-6);
17 }
2 CompSci 201, Spring 2024, Runtime Efficiency 2
160
140
@
£120
g 100
Z g0 ——MethodA [String] (ms)
5
(2]
= 60 —-MethodB
g 40 [StringBuilder] (ms)
=
20
0

1024 2048 4096 8192 1638432768
Number of String concat reps

CompSci 201, Spring 2024, Runtime Efficiency

Empirical results in more detail

MethodA ms)|MethodB (ms

1024 0.384 0.050
2048 1.136 0.061
4096 3.443 0.077
8192 12.244 0.099
16384 41.754 0.143
32768 147.719 0.207

Multiply reps by 2 multiplies runtime
by ~2. Linear complexity.

Multiply reps by 2 multiplies runtime
by 4. Quadratic complexity.

2/5/24 CompsSci 201, Spring 2024, Runtime Efficiency 25

2/6/2024

https://coursework.cs.duke.edu/cs-201-spring-23/stringconcattiming

Empirical results in more detail

MethodA MethodB
Reps ns/rep ns/rep

1024 0.375 0.048
2048 0.555 0.030
4096 0.841 0.019
8192 1.495 0.012
16384 2.548 0.009
32768 4.508 0.006

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

CompsSci 201, Spring 2024, Runtime Eff

What's going on? Documentation?

docs.oracle.com/en/java/javase/17/docs/a

pi/java.base/java/lang/String

Class String

Java.lang.Object

java.lang.String

All Implemented Intertaces:
Serializable, CharSequence, Comparable<Strings, Constable, Constantbesc

public final class String
extends Object
implements Serializable, Comparable<String=, CharSequence, Constable, ConstantDesc

The String class represents eharacter strings. All string literals in Java programs, such as *abc®, are implemented ¢

{ Strings are constant; their values cannot be changed after they are :rsal.eﬂ]smng buffers support mutable strings.

27

28

methodA revisited

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String();

21 for (int i=0; i<reps; i++) {

22 result += toConcat; String is immutable; line 22
23 creates a new string and

24 return result;
25 }

How many characters will be copied per iteration if
toConcat is “201”?

copies result then toConcat.

«i=0:3
«i=1. 6
«i=2:9

« On iteration i, need to copy 3*(i+1) characters!

2/5/24 CompsSci 201, Spring 2024, Runtime Efficienc

2/6/2024

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

How many total characters are
copied? Algebra!

methodA: for i from @ to reps-1, _
copy 3*(i+1) characters per iteration.

reps—1 reps—1
Z 3(1+1) = 3(reps) + 3(Z i)

i=0 i

= 3(reps) + 3 (?) (0+reps—1)

Arithmetic series formula:

o= (@) orhond

i=1

= ;(reps2 + reps)

29

Abstracting, Intro to Big O
Notation (Preview for next time)

* The 3/2in %repsz doesn't tell us much about

how the performance scales with the size of
reps.

« Often, we use asymptotic notation, especially Big
0 notation to abstract away constants.

* For example: Let N = reps, then we say that the
asymptotic runtime complexity is O(N2).
« If you ~double N, you ~quadruple the runtime

30

Two general Big O rules

1. Candrop constants
* 2N+3 = O(N)
+ 0.007TN + 1,000,000 = O(N)

2. Can drop lower order terms
* 2N2+3N = O(2N?) = O(N?)
* N+log(N) = O(N)
« 2N+ N2 = O(2N)

31

2/6/2024

10

32

33

34

Hierarchy of some common
complexity classes

o(2N) Exponential Calculate all subsets of a set

O(N?3) Cubic Multiply NxN matrices

O(N?) Quadratic Loop over all pairs from N
things

O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

0(1) Constant Addition, array access, etc.

How does StringBuilder work?

“Every string builder has a capacity. As long as
the length of the character sequence contained in
the string builder does not exceed the capacity, it
is not necessary to allocate a new internal buffer.
If the internal buffer overflows, it is automatically
made larger.” - StringBuilder JDK 17
documentation.

* But how does it grow?

» Geometrically! Like ArrayList, HashMap, ...
« Still linear amortized complexity, for same reasons

StringBuilder is like an ArrayList of
characters

* Suppose we run the code:

StringBuilder() sb = new StringBuilder(3);
sb.append(“hi”);
sb.append(“ya”);

Initial
buffer/array
capacity

Array representing StringBuilder

—tt— hlily la

2/6/2024

11

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

2/6/2024

How many total characters are
copied with a StringBuilder?
Suppose we
« start with capacity 3,
* append a length 3 string reps times, and
* double when out of capacity.

~log,(3-reps)
2t =3 -reps + 6 - reps

Fre . "
rom Geometric series formula:

doubling and
copying the
array

35
Memory/Runtime Tradeoff

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder();

29 for (int i=0; i<reps; i++) {

30 result.append(toConcat);

31 }

32 System.out.printf("String builder capacity is %d characters¥n”, result.capacity());

33 System.out.printf("Result length is ¥d characters¥n”, result.length());

34 return result.toString();

35 }

ProBLEMS @) OUTPUT DEBUG CONSOLE TERMINA

String builder capacity s 147454 characters
Result length is 98304 characters

Final StringBuilder is using about 146k / 98k ~=
1.5 times as much memory as necessary. Very
common tradeoff in data structures!

CompSei 201, Spring 20 t

36
What's the real difference between
methodA and methodB?
« methodA: Copies roughly 3 (reps? — reps)
» methodB: copies roughly 9 - reps characters.
Fe e et |
1000 1.5 0.009
2000 6 0.018
4000 24 0.036
3000 95 0.072
16000 383 0.144
32000 1535 0.288
37

12

2/6/2024

WOTO
Go to duke.is/m/pm9u

Not graded for
correctness, just
participation.

Try to answer
without looking back
at slides and notes.

But do talk to your
neighbors!
2 7 String s = "hi";
How many total characters mustbe 8 s += "hey";
copied by the code on lines8and 97 9 s 4= 53
Remember that Strings are immutable
inJava * [0
5
9
0
0
3
Suppose method A has linear complexity and takes 10 ms to run on an input of
size N. About what would you expect the runtime to be for an input of size 2*N?
Y m
() 10ms
\/zu ms
() 40ms
) 100 ms

13

https://duke.is/m/pm9u

4

Suppose method B has quadratic complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input of
size 2*N? * [0]

) 10ms

O 20ms

() 100ms

41

Here is another String concatenation method. Suppose the input string s has a
small number of characters, say 3. As a function of the parameter reps, how

would you characterize the runtime complexity of the method? Hint: As a
function of reps, how many total characters will be copied across all iterations of

theloop? * [
7 public static String concatAlot(int reps, Str
for (int i=0; i<reps; i++) {
9 S += §;
10 }
11 return s;
12 }
() Constant
) Linear

Quadratic

42

2/6/2024

14

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Midterm Exams
	Slide 4: Exam Grades and Missing Exams
	Slide 5: Midterm 1 Material/Concepts
	Slide 6: Midterm 1 Material/Concepts
	Slide 7: Wrapping up Maps
	Slide 8: HashMap methods at a high level
	Slide 10: Revisiting Hashing Efficiency
	Slide 11: Simple uniform hashing assumption (SUHA)
	Slide 12: Implications of SUHA
	Slide 13: Memory/Runtime Tradeoff
	Slide 14: Load Factor and HashMap Growth
	Slide 15: Hash table resizing
	Slide 16: WOTO
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Revisiting guarantees
	Slide 21: Runtime Efficiency, an Empirical Look at String Concatenation
	Slide 22: Two methods for repeated concatenation
	Slide 23: Empirical timing experiment
	Slide 24: Empirical results
	Slide 25: Empirical results in more detail
	Slide 26: Empirical results in more detail
	Slide 27: What’s going on? Documentation?
	Slide 28: methodA revisited
	Slide 29: How many total characters are copied? Algebra!
	Slide 30: Abstracting, Intro to Big O Notation (Preview for next time)
	Slide 31: Two general Big O rules
	Slide 32: Hierarchy of some common complexity classes
	Slide 33: How does StringBuilder work?
	Slide 34: StringBuilder is like an ArrayList of characters
	Slide 35: How many total characters are copied with a StringBuilder?
	Slide 36: Memory/Runtime Tradeoff
	Slide 37: What’s the real difference between methodA and methodB?
	Slide 38: WOTO
	Slide 39
	Slide 40
	Slide 41
	Slide 42

