| 8: Asymptotic (Big-O)
Analysis

Alex Steiger
CompSci 207: Spring 2024
0/8/24

Logistics, Coming up

» Today, 2/7
* APT 3 due

* Next Monday 2/12
e Midterm Exam T

* Next Wednesday 2/14
* APT 4 due

Person in CS: Alan Turing

« 1912-1954 (died at 41) : 1
 English, PhD at Princeton in 1938

» Mathematician, cryptographer,
ploneermg thinker in Al
» “"Father of modern computer science”

 Turing machine — helped formalize what
IS computable

« Cryptography work in WW2

e Prosecuted in 1952 for
homosexuality

» Given choice of chemical "treatment” or
prison, took former

 Died 2 years later of cyanide poisoning,
circumstances debated

CompSci 201, Spring 2024, Asymptotic
Analysis

2/7/24

8 7 String s = "hi";

How many total characters must be 8 S += "hey";
copied by the code on lines 8 and 97 0 S += S;
Remember that Strings are immutable

inJava. * [T}

CompSci 2071, Spring 2024, Runtime

275724 Efficiency

3

Suppose method A has linear complexity and takes 10 ms to run on an input of

size N. About what would you expect the runtime to be for an input of size 2*N?

*
<)

CompSci 201, Spring 2024, Runtime

2/5/24 Efficiency

4

Suppose method B has quadratic complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input of
size 2*N? * [T]

CompSci 201, Spring 2024, Runtime

2/5/24 Efficiency

Here is another String concatenation method. Suppose the input string s has a
small number of characters, say 3. As a function of the parameter reps, how

would you characterize the runtime complexity of the method? Hint: As a
function of reps, how many total characters will be copied across all iterations of

the loop? * [T}

7 public static String concatAlot(int reps, Str
8 for (int 1=0; i<reps; i++) {

9 S += S;

10 }

11 return s;

12 }

O Constant
O Linear

O Quadratic

%xpo nential

2/5/24 CompSci 201, Spring 2024, Runtime

Efficiency

Asymptotic Analysis
and Big O Notation

Runtime and memory

 Two most fundamental resources on a
computer:

» Processor cycles: Number of operations per second
machine can perform

* (2 GHz = 2 billion operations per second).
« Memory: space for storing variables, data, etc.
* (esp. working memory, a.k.a. cache and RAM)

« We will mostly focus on runtime complexity
« Often comes at expense of memory, e.g., HashMap

. gtart by reasoning about empirical runtimes,
ut...

Problem with empirical runtimes

Moore’s Law: The number of transistors on microchips doubles every two years [SgE
Moor | | es t emp | regularity that the number of tr ist) tegrated ¢ lit uble PProx t very t vear in Data

|l lvancement IS import
Transistor count

2/7/24

°
22
N ;
. 088 8
0880 go
e 88848
°o8,°
00
°
° -§0
L@ o
°
0o® b ¢
8o 2
8o ®
Wiy
% e
> 9
°
°
°
o 2
°

CompSci 201, Spring 2024, Asymptotic
Analysis

Same code that
takes 1 min. In
1990 takes

e ~2 s1n 20007
e ~63 ms in 20107
e ~2 Ms In 20207

10

How do we measure efficiency of
the code apart from the machine?

 Let N be the size of the input
 Forsome int[] ar, N could be ar.length

« Count T(N) = number of constant time operations in
the code as a function of N.

« Reason about how T(N) grows when N becomes
large.

« "Asymptotic” (in the limit) notation

Reminder: What is constant time?

« Running time does not depend on size of the
input.
 [f ~T msto.get() when ArrayList has 1,000
elements?

* Then ~1T msto .get () when ArrayList has
1,000,000 values.

 Other constant time operations might be a very
different constant.

« Adding 2+2 might be faster than .get(), but both are
constant.

Constant Time Examples

* Index into an array (ar[0] or ar[201])

e Arithmetic (+, -, *, /, %, etc)

* Primitive comparison <, ==, etc.
 Accessing an object attribute (e.g. . 1length)

e ArrayList .get(), .size(), .add() [toend,
amortized]

« Non-constant time usually has a loop or method
call, may depend on implementation of data
structures at hand

Big-O (limit definition)
« Given N (for example, the size of the input)

 Function T(N) (for example, the number of constant
time operations in the code)

Definition (big O notation).

T(N)isO0(g(N)) if 11m gE ; < ¢ for some constant c

that does not depend on N.

In other words: T(N) is O(g(N)) if it is at most a
constant factor times slower than g(N) for large

INnput N.

Two general rules

1. Can drop constants
« 2N+3 2> O(N)
« 0.00TN + 1,000,000 > O(N)

2. Can drop lower order terms
« 2N%+3N > O(N?)
* N+log(N) = O(N)
« 2N+ N2 > O(2N)

Hierarchy of some common
complexity class

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N?) Quadratic Loop over all pairs from N
things

O(N Nearly-linear Sorting algorithms

log(N))

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

CompSci 201, Spring 2024, Asymptotic

Analysis 1°

2/7/24

Some common complexity
classes and their growth

1 1 2

1 1 1 * O(log(N)) adds ~1

2 2 2 4 8 4 + O(N) roughly doubles
4 3 4 16 64 16 O(N?) roughly

8 4 8 64 512 256 quadruples

16 5 16 256 4k 65k * O(N3) roughly

32 6 32 1k 32k 428+9 Mmultiples by 8

64 7 64 4k 262k 1.8E+19 ° O(2V) squares each

time

CompSci 201, Spring 2024, Asymptotic

S Analysis

17

Relation to Empirical Timing and

NA2 + 19N | factor
+ 200 increase Looks linear?
10 490 NA

20

40

80
160
320
640
1280
2560
5120
10240
20480

2/7/24

Lower Order Terms

980 2.00
2560 261 Asymptotic analysis
8120 3.17 describe behaviorin

28840 3.55 the limit as N becomes
108680 3.77 large, lower order terms
421960 3.88 may dominate at small

1662920 3.94 |nput sizes.

6602440 3.97

26311880 3.99 Lcéokg]
105052360 3.99 quadratic
419819720 4.00

CompSci 201, Spring 2024, Asymptotic

Analysis e

n"2 + nlog(n) + (log(n))"2 is...

& onr2)
() Otnlog(n)

() O(logm)*2)

CompSci 201, Spring 2024, Runtime

2/5/24 Efficiency

20

2/5/24

N2 + 28nis... *

() omnr2)
V5 o@An)

CompSci 201, Spring 2024, Runtime
Efficiency

21

2/5/24

log(n*2) is... *
= 2log(n) = O(log(n))

() o(n~r2)
() om)

() O(log(n)*2)

& Ologm)

CompSci 201, Spring 2024, Runtime
Efficiency

22

Suppose you time an algorithm for
different values of N and get the
results shown in the table. What is
the best characterization of the
asymptotic runtime complexity
observed in the data? *

() O(NA3)
GJ/Gmﬂa
() o)

(O Oflog(\y)

() oy

2/5/24

100
200
400
800
1600
3200
6400
12800

CompSci 201, Spring 2024, Runtime

Efficiency

Time (s)

0.03

0.08

0.24

0.80

2.87

10.85
42.18
166.28

23

Suppose you time an algorithm
for different values of N and M
and get the results shown in the
table. What is the best
characterization of the
asymptotic runtime complexity
observed in the data? *

2/5/24

Efficiency

100
100
100
200
200
200
400
400
400

CompSci 201, Spring 2024, Runtime

100
200
400
100
200
400
100
200
400

Time (s)

0.81
1.21
2.01
1.11
1.51
2.31
1.71
2.11
2.91

24

Big-Oh tfor Runtime: Algorithms &

Coage

* What is the runtime complexity of stuff (n) ?

« How many times does the loop iterate?
* In terms of n, the parameter

* Loop body is O(1)?

» Constant time (e public int stuff(int n) {

* Independent of n 8 int sum = 0;

9 for(int k=0; k < n; k += 1) {
* Addnsameasadd1|,, sum += n:

11 }

12 return sum;

13}

CompSci 201, Spring 2024, Asymptotic

2(7124 Analysis

25

General strategy for determining
Big-O runtime complexity

Most general: Determine T(N), the number of
constant time operations as a function of the size
of the input, N. Then simplify using Big-O.

Practically, covers common cases:

1. Foreach line of code, label:
a) Complexity of that line, and
b) Number of times the line is executed

2. Add up over all lines, multiplying the two labels

Nested loop example

What about the big-O runtime complexity of this
code as a function of n?

6 public int nested(int n) {
7 int result = 0; 7 0(1) 1

8 for (int 1=0; i<n; i++) {

9 for (int j=0; j<i; j++) { 8 O(1) n

10 result += 1; o 0(1) ?

11 }

. , 10 0(1) ?

13 return result; 13 O(1) 1

How many times does line 10 execute?

CompSci 201, Spring 2024, Asymptotic

2(7124 Analysis

27

Nested loop example

How many times does line 10 execute?

6 public int nested(int n) { LII:IQ'IOEXQPU'(GS
v int result = 0; this many times
8 for (int i=0; i<n; i++) { 1 T
9 for (int j=0; j<i; j++) {))
10 result += 1;
12 } n-2 n-2
13 return result;
. n-1 n-1

Intotal?1+2+---+(n—2)+(n—1)zn?is

O(n?) iterations

2/7/24

CompSci 201, Spring 2024, Asymptotic
Analysis

2

28

Nested loop example

Putting it together:

6 public int nested(int n) { 7 0(1) 1
/ int result = 0;

8 for (int 1=0; i<n; i++) { 8 O(1) n

9 for (int j=0; j<i; j++) { 9 O(1) 0(n?)
10 result += 1; 10 0(1) O(nz)
11 }

12 } 13 O(1) T

13 return result;

Total runtime complexity: (1) + (n) + (n2) + (n?) + (1)
is O(n?)

CompSci 201, Spring 2024, Asymptotic

2(7124 Analysis

29

Not all nested loops are quadratic

What about the big-O runtime complexity of this

code as a function of n?

16 public int nested2(int n) { Complexity
17 int result = 0; 17 0(1) 1

18 for (int 1=0; i<n; i++) {

19 for (int j=0; j<100; j++) 18 0(1) N

20 result += 1; 19 O(1) 100N
21 }

-) 20 0(1) 100n
23 return result; 23 O(1) 1

24 }

Total runtime complexity: (1) + (n) + (200n) + (1)
1S O(ﬂ) Reminder: 200n is 200 times slower

than n, but their runtimes both scale

linearly

2/7/24 30

Analysis

Not all loops are nested

What about the big-O runtime complexity of this
code as a function of n?

28 public int parallel(int n) { Complexity
29 0(1) 1

29 int result = 0;

30 for (int 1=0; i<n; i++) {

31 result += 1; 30 0(1) N
32 ¥ 31 0(1) n
33 for (int 1=0; 1i<n; i++) {

34 result += 1; 33 O(T) f!
35 } 34 O(1) n
36 return result; 26 O(T) 1
37 }

Total runtime complexity: (1) + (4n) + (1)
is O(n)

2/7/24 CompSci 201, Spring 2024, Asymptotic

Analysis o

Not all loops increment by 1

Big-O Runtime complexity of calc(N) is...

« How many times does the loop iterate?
 Concrete to abstract: calc(16), calc(32), ...

* Inside loop? O(1) operations

143¢ public int calc(int n) {

144 int sum = 0;

145 for(int k=1: k < n: k %= 2) {
146 sum += k:

147 }

148 return sum;

149 }

CompSci 201, Spring 2024, Asymptotic

2/7/24 Analysis

Generalizing: Concrete to Abstract

0

1 5 Iterations
2 1 32 k=1,2,48,16..5
4 k=1,2.2iters iters
8 k=1,24..3iters 33 6 iterations
63 6 iterations

143 public int calc(int n) {

144 int sum = @;

145 for(int k=1; k < n; k %= 2) {

146 sum += k;

147 }

148 return sum;

149 } O(log(N))

CompSci 201, Spring 2024, Asymptotic

2(7124 Analysis

33

Accounting for iteration and non-
constant time operations

What about the big-O runtime complexity of this
code as a functionof n = words.size()?

40 public ArraylList<String> uniqueWords (ArrayList<String> words) {
41 ArraylList<String> unique = new ArraylList<>();
42 for (String w : words) { O(1),

43 if (lunique.contains(w)) { initialized

24 unique.add(w); empty List
45 } .

45 } Amortized O(n) in worst

47 return words; [RSIQBREIe[eRto case

48 }

end
Still O(1), does not
copy list to return

Total: Make n calls to O(n) contains: O(n?)

CompSci 201, Spring 2024, Asymptotic

Analysis 4

2/7/24

-xponential time algorithm?

Problem from previous WOTO: What is the
runtime complexity of concatAlot as a function
of reps”?

12
13
14
15
16
17

public static String concatAlot(int reps, String s) {

return s,

for (int 1=0; i<reps; i++) {
S += S, ‘--..1|Hiiiiiiiiil
} Same as: tMEs
S =S + S;

}

Runtime of line 14 is O(s.length()). And this
doubles every iteration througn the loop.

Examine how the length of s grows by iterations.

2/7/24

CompSci 201, Spring 2024, Asymptotic

Analysis 35

-xponential time algorithm?

12 public static String concatAlot(int reps, String s) {
13 for (int 1=0; i<reps; 1++)
14 S += S, .

15 } Same as: HMES

16 return s; S =S + S;

17 }

Examine how the length of s grows by iterations.

s length()

0 (mput S) 1 (suppose)

1 9 So runtime has to
be at least 2reps,

2 4 exponential

3 8 complexity!

reps_‘l Jreps- (2)(2reps—1) — Jreps

CompSci 201, Spring 2024, Asymptotic

2/7/24 Analysis

36

102 public int keepHalving(int n) {
103 int numIterations = 0;
What is the big O runtime 104 while (n > 1) {
complexity of the keepHalving 105 n=n/2;
method as a function of the 106 numlterations++;
parameter n? * 107 }
108 return numIterations;
109 }
O o
@/ O(log(n))
O om)
() omnr2)
() onr3)
() o@*n) | | |
CompSci 201, Spring 2024, Runtime

Efficiency

38

What is the big O runtime
complexity of the moreLooping
method as a function of the
parameter n? *

() 0@ n)

2/5/24

86
87
88
89
920
921
92
93
94

Efficiency

public int moreLooping(int n) {
int result = 0;
for (int i=n-1; i<n; i++) {
for (int k=0; k<10; k++) {
result += 1;
}
}

return result;

CompSci 201, Spring 2024, Runtime

39

What is the big O runtime complexity of the reverse method as a function of n
where n is the size() of the List parameter input? add(0, s) adds s to the front of

the list. *
94 public static List<String> reverse(List<String> input) {
95 ArrayList<String> result = new ArraylList<>();
96 for (String s : input) {
97 result.add(@, s);
98 }
99 return result;
100 }
() o
() Ofllog(n))
() om
Qj/;mﬂa
() om~3)
0(27n)
2/5/24 40

ETTICIeENnCY

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Person in CS: Alan Turing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Asymptotic Analysis and Big O Notation
	Slide 9: Runtime and memory
	Slide 10: Problem with empirical runtimes
	Slide 11: How do we measure efficiency of the code apart from the machine?
	Slide 12: Reminder: What is constant time?
	Slide 13: Constant Time Examples
	Slide 14: Big-O (limit definition)
	Slide 15: Two general rules
	Slide 16: Hierarchy of some common complexity class
	Slide 17: Some common complexity classes and their growth
	Slide 18: Relation to Empirical Timing and Lower Order Terms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Big-Oh for Runtime: Algorithms & Code
	Slide 26: General strategy for determining Big-O runtime complexity
	Slide 27: Nested loop example
	Slide 28: Nested loop example
	Slide 29: Nested loop example
	Slide 30: Not all nested loops are quadratic
	Slide 31: Not all loops are nested
	Slide 32: Not all loops increment by 1
	Slide 33: Generalizing: Concrete to Abstract
	Slide 34: Accounting for iteration and non-constant time operations
	Slide 35: Exponential time algorithm?
	Slide 36: Exponential time algorithm?
	Slide 38
	Slide 39
	Slide 40

