L8: Asymptotic (Big-O)
Analysis

Alex Steiger
CompSci 201: Spring 2024
5/8/24

Logistics, Coming up

 Today, 2/7
* APT 3 due

* Next Monday 2/12
* Midterm Exam 1

* Next Wednesday 2/14
* APT 4 due

Person in CS: Alan Turing

+1912-1954 (died at 41)
« English, PhD at Princeton in 1938

» Mathematician, cryptographer,
pioneering thinkerin Al
« “Father of modern computer science”

« Turing machine — helped formalize what
is computable

« Cryptography work in WW2 © Am
» Prosecutedin 1952 for ol
homosexuality
« Given choice of chemical “treatment” or
prison, took former
« Died 2 years later of cyanide poisoning,
circumstances debated

2/712024

2

7 String s = "hi
How many total characters mustbe 8 s += "hey";
copied by the code onlines 8and 92 Q
Remember that Strings are immutable
inJava * [0

S +=s;

) s

9

3

Suppose method A has linear complexity and takes 10 ms to run on an input of
size N. About what would you expect the runtime to be for an input of size 2*N?

m

() 10ms

_/zu ms

() 40ms

() 100ms

4

Suppose method B has quadratic complexity and takes 10 ms to run on an

input of size N. About what would you expect the runtime to be for an input of

size 2*N7 *

10ms
() 20ms

3/49 ms

() 100ms

o

2/7/2024

2/712024

Here is another String concatenation method. Suppose the input string s has a
small number of characters, say 3. As a function of the parameter reps, how

would you characterize the runtime complexity of the method? Hint: As a
function of reps, how many total characters will be copled across all iterations of

theloop? * [

7 public static String concatAlot(int reps, Str
for (int i=0; i<reps; i++) {

9 S += §;

10 }

11 return s;

12 }

) Constant

) Linear

_) Quadratic

Asymptotic Analysis
and Big O Notation

Runtime and memory

» Two most fundamental resources on a
computer:

+ Processor cycles: Number of operations per second
machine can perform

* (2 GHz = 2 billion operations per second).
* Memory: space for storing variables, data, etc.
« (esp. working memory, a.k.a. cache and RAM)

» We will mostly focus on runtime complexity
« Often comes at expense of memory, e.g., HashMap

. Etart by reasoning about empirical runtimes,
ut...

2/712024

Problem with empirical runtimes

Maore's Law: The number of transistors on microchips doubles every two ye M“

Same code that
takes 1 min. in
1990 takes

+~2'sin 2000?
- : * ~63 ms in 2010?
T + ~2 ms in 20207

10

How do we measure efficiency of
the code apart from the machine?

* Let N be the size of the input
* Forsome int[] ar, Ncould be ar.length

« Count T(N) = number of constant time operations in
the code as a function of N.

« Reason about how T(N) grows when N becomes
large.
« "Asymptotic” (in the limit) notation

11

Reminder: What is constant time?

* Running time does not depend on size of the
input.
* If ~1 msto.get() when ArrayList has 1,000
elements?
* Then ~1 ms to .get () when ArrayList has
1,000,000 values.

+ Other constant time operations might be a very
different constant.
 Adding 2+2 might be faster than .get(), but both are
constant.

12

13

14

15

Constant Time Examples

« Index into an array (ar[0] or ar[201])

* Arithmetic (+, -, *, /, %etc)

* Primitive comparison <, ==, etc.

« Accessing an object attribute (e.g. . length)

* ArrayList .get(), .size(), .add() [toend,
amortized]

» Non-constant time usually has a loop or method
call, may depend on implementation of data
structures at hand

Big-O (limit definition)
« Given N (for example, the size of the input)

« Function T(N) (for example, the number of constant
time operations in the code)

Definition (big O notation).
T(N)is 0(g(N\)) if ,\1,1330 P
that does not depend on N.

< ¢ for some constant ¢

In other words: T(N) is 0(g(N)) if it is at most a
constant factor times slower than g(N) for large
input N.

Two general rules

1. Candrop constants
* 2N+3 > O(N)
+ 0.007TN + 1,000,000 - O(N)

2. Can drop lower order terms
* 2N2+3N > O(N?)
* N+log(N) = O(N)
« 2N+ N2> 0(2V)

2/712024

Hierarchy of some common
complexity class

02Ny Exponential Calculate all subsets of a set

O(N?3) Cubic Multiply NxN matrices

O(N?) Quadratic Loop over all pairs from N
things

O(N Nearly-linear Sorting algorithms

log(N))

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

0o(1) Constant Addition, array access, etc.

16
Some common complexity
classes and their growth
IR ...
1 1 1 1 1 2 * O(log(N)) adds ~1
2 2 2 4 8 4+ O(N) roughly doubles
4 3 4 16 64 16 - O(N?) roughly
8 4 8 64 512 256 quadruples
16 5 16 256 4k 65k = O(N®) roughly
32 6 32 1k 32k 42e+9 Multiples by 8
64 7 64 4k 262k1.8E+19 * O(2") squares each
time
-~ . !
17

Relation to Empirical Timing and
Lower Order Terms

NA2 + 19N | factor
+ 200 increase

10 490 NA
20 980 2.00
40 2560 261 Asymptotic analysis
80 8120 317 describe behaviorin
160 28840 355 thelimitas N becomes
320 108680 3.77 large, lower order terms
640 421960 3.88 may dominate at small
1280 1662920 394 input sizes.
2560 6602440 3.97

5120 26311880 3.99 L%OKS)
10240 105052360 3.99 gEsiatio
20480 419819720 4.00

18

2/7/2024

20

21

22

n"2 + nlog(n) + (log(n)*2 is... *

@w/ 0(n*2)
() Oflog(n)

O oltloginy*2)

nA2 + 2Mnis.. *

() om*r2)
@ 0(2*n)

log(n~2) is... *
= 2log(n) = O(log(n))
) owmra)

) om
() Ofllogimi*2)

& oflagn)

2/712024

Suppase you time an algorithm for
different values of N and get the
results shown in the table. What is
the best characterization of the
asymptotic runtime complexity
observed in the data? *

O ome3)
@/ O(NA2)
O o

(O otogmy

O om

23

Suppose you time an algorithm
for different values of N and M
and get the results shown in the
table. What is the best
characterization of the
asymptotic runtime complexity
observed in the data? *

-

) omy

e

(L) om

)

O(NM)

@/ ON+M)

~
_

Time (s)
100 0.03
200 0.08
400 0.24
800 0.80
1600 2.87
3200 10.85
6400 42.18
12800 166.28
M Time (s)
100 100 0.81
100 200 1.21
100 400 2.01
200 100 1.11
200 200 1.51
200 400 2.31
400 100 1.71
400 200 2.11
400 400 291

2/7/2024

for(int k=@; k < n; k += 1) {

24
Big-Oh for Runtime: Algorithms &
Code
» What is the runtime complexity of stuff (n) ?
* How many times does the loop iterate?
* Interms of n, the parameter
* Loop body is O(1)?
+ Constant time 7 public int SEuFFCint n) I
* Independent of n 8 int sum = @;
* Addn same as add 1 1; sum 4= n
11 1
12 return sum;
13 }
25

26

27

28

General strategy for determining
Big-O runtime complexity

Most general: Determine T(N), the number of
constant time operations as a function of the size
of the input, N. Then simplify using Big-O.

Practically, covers common cases:

1. For each line of code, label:
a) Complexity of that line, and
b) Number of times the line is executed

2. Add up over all lines, multiplying the two labels

Nested loop example
What about the big-O runtime complexity of this
code as a function of n?
6 public int nested(int n) {
7 int result = 8; o(1) 1
3 for (int i=0; i<n; i++) { 7
9 for (int j=@; j<i; j+) { 8 o(1) n
10 result += 1; 9 0(1) 2
11 }
12 3 10 0o(1) ?
13 return result; 13 o(1) 1
How many times does line 10 execute?

Nested loop example

How many times does line 10 execute?

6 public int nestedCint n) { Line 10 executes
7 int result = 0; this many times
8

for (int i=08; i<n; i++) { 1 1
9 for (int j=0; j<i; 3+ { , 2
10 result += 1;
n }
12 } n-2 n-2
13 return result;
n-1 n-1

2
Intotal? 1+ 2+ -+ n—2)+(n—1) ~ -is
0(n?) iterations

2/712024

29

30

31

Nested loop example

Putting it together: T
6 public int nestedCint n) { 7 0o(1) 1
7 int result = 8;
8 for (int i=8; ien; i+4) { 8 o(1) n
9 for (int j=0; j<i; j+) { 9 o(1) 0o(n?)
1e result += 1; 2
1 10 0o(1) 0(n?)
12 } 13 o(1) 1
13 return result;

Total runtime complexity: (1) + (n) + (n2) + (n2) + (1)
is O(n?)

Not all nested loops are quadratic

What about the big-O runtime complexity of this
code as a function of n?

16 public int nested2(int n) { Complexity
17 1

17 int result = @;

18 for Cint i=0; i<n; i+ { o(1)

19 for Cint j=0; j<100; j++) 18 o(1) n
28 result += 1; 19 o(1) 100n
21 }

. 3 20 o(1) 100n
23 return result; 23 o(1) 1

24 }

Total runtime complexity: (1) + (n) + (200n) + (1)
is O(n)

Reminder: 200n is 200 times slower
than n, but their runtimes both scale
linearly

Not all loops are nested

What about the big-O runtime complexity of this
code as a function of n?

28 public int parallel(int n) { Line Complexity
29 int result = @; 29 o(1
30 for (int i=0; i<n; i++) { ()
31 result += 1; 30 o(1) n
3z } 31 o(1) n
33 for (int i=0; i<n; i+) {
34 result 4= 1; 33 o(1) n
35 } 34 o(1) n
36 return result;

H 1 1
e ' 36 o(1)

Total runtime complexity: (1) + (4n) + (1)
is O(n)

2/7/2024

10

32

33

34

Not all loops increment by 1

Big-O Runtime complexity of calc(N) is...

* How many times does the loop iterate?
« Concrete to abstract: calc(16), calc(32), ...

* Inside loop? O(1) operations

143+

144
145
146
147
148

149

public int calc(int n) {
int sum = @;
for(int k=1; k < n; k »=2) {
sum += k;
}

return sum;

Generalizing: Concrete to Abstract

16

0 5 iterations
1 32 k=1,2,4816..5
k=1,2..2 iters iters
k=1,2,4..3 iters 33 6 iterations
63 6 iterations
143< public int calc(int n) {
144 int sum = @;
145 for(int k=1; k < n; k »=2) {
146 sum += k;
147 3
ijg 7 N return sum; O(lOg(N))

Accounting for iteration and non-
constant time operations

What about the big-O runtime complexity of this
code as a function of n = words.size()?

0
41
42
43
44
45
46
47
48

public Arraylist<String> uniqueWords (Arraylist<String> words) {
Arraylist<String> unique = new Arraylist<o();

1

if (lunique.contains

}
}

Amortized

for (String w : words) { o(1),
@) { Loopin initialized
unique.add(w); times... empty List
O(n) in worst
case

return words; [IRSIQRELCRE]

end
Still O(1), does not
copy list to return

Total: Make n calls to O(n) contains: O(n?)

2/7/2024

11

Exponential time algorithm?

Problem from previous WOTO: What is the
runtime complexity of concatAlot as a function
of reps?

12 public static String concatAlot(int reps, String s) {
13 for (int i=0; i<reps; i++) {

14 5 4= 5; Loop reps

15 } times

17 }

Runtime of line 14 is O(s. 1en% h()). And this
doubles every iteration through the Ioop

Examine how the length of s grows by iterations.

12 public static String concatAlot(int reps, String s) {
13 for (int i=0; i<reps; i++)
14 S +=5; Loﬁfnr‘eps
15 } es
16 return s;
17
Examine how the length of s grows by iterations.
s.length() O(1) operations (char copies)
0 (input s) 1 (suppose) 2
1 2 4 So runtime has to
be at least 2¢ps,
2 4 8 exponential
3 8 16 complexity!
reps-1 oreps-1 (2)(2reps1) = reps
” CompSci 20 ing 2024, Asymptotic
102 public int keepHalving(int n) {
103 int numIterations = @;
What is the big O runtime 104 while (n > 1) {
complexity of the keepHalving 105 n=n/2;
method as a function of the 106 nunIterationss+;
parameter n? * 107 }
108 return numIterations;
109 }
O om
!Q/oaog(n»
O om
O o2
O omr3)
O, oern
- Efficienc

2/7/2024

12

What is the big O runtime
complexity of the moreLooping
method as a function of the
parameter n? *

Q(om

O oflegin)
O om

() om~2)
() omr3y

02%n)

39

public int moreLoopingint n) {
int result = 9;
for Cint Len-1; ien; i44) {
for (int ked; kel@; ke+) {
result 4= 1;
}
}

return result;

What is the big O runtime complexity of the reverse method s a function of n
where n is the size() of the List parameter input? add(0, s) adds s to the front of

the list. *
94 public static List<String> reverse(List<String> input) {
95 Arraylist<String> result = new Arraylist<();
96 for (String s : input) {
97 result.add(@, s);
98 }
99 return result;
100 }
o)
() oflogn)
o)
0O(n*3)
o)

40

2/7/2024

13

	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Person in CS: Alan Turing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Asymptotic Analysis and Big O Notation
	Slide 9: Runtime and memory
	Slide 10: Problem with empirical runtimes
	Slide 11: How do we measure efficiency of the code apart from the machine?
	Slide 12: Reminder: What is constant time?
	Slide 13: Constant Time Examples
	Slide 14: Big-O (limit definition)
	Slide 15: Two general rules
	Slide 16: Hierarchy of some common complexity class
	Slide 17: Some common complexity classes and their growth
	Slide 18: Relation to Empirical Timing and Lower Order Terms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Big-Oh for Runtime: Algorithms & Code
	Slide 26: General strategy for determining Big-O runtime complexity
	Slide 27: Nested loop example
	Slide 28: Nested loop example
	Slide 29: Nested loop example
	Slide 30: Not all nested loops are quadratic
	Slide 31: Not all loops are nested
	Slide 32: Not all loops increment by 1
	Slide 33: Generalizing: Concrete to Abstract
	Slide 34: Accounting for iteration and non-constant time operations
	Slide 35: Exponential time algorithm?
	Slide 36: Exponential time algorithm?
	Slide 38
	Slide 39
	Slide 40

