
2/7/2024

1

L8: Asymptotic (Big-O) 
Analysis

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
1

Alex Steiger

CompSci 201: Spring 2024

5/8/24

Logistics, Coming up

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
2

• Today, 2/7
• APT 3 due

• Next Monday 2/12
• Midterm Exam 1

• Next Wednesday 2/14
• APT 4 due

Person in CS: Alan Turing

• 1912-1954 (died at 41)

• English, PhD at Princeton in 1938

• Mathematician, cryptographer, 
pioneering thinker in AI

• “Father of modern computer science”
• Turing machine – helped formalize what 

is computable
• Cryptography work in WW2

• Prosecuted in 1952 for 
homosexuality

• Given choice of chemical “treatment” or 
prison, took former

• Died 2 years later of cyanide poisoning, 
circumstances debated

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
3

1

2

3



2/7/2024

2

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
4

🗸

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
5

🗸

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
6

🗸

4

5

6



2/7/2024

3

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
7

🗸

Asymptotic Analysis 
and Big O Notation

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
8

Runtime and memory

• Two most fundamental resources on a 
computer:

• Processor cycles: Number of operations per second 
machine can perform 

• (2 GHz = 2 billion operations per second).
• Memory: space for storing variables, data, etc.

• (esp. working memory, a.k.a. cache and RAM)

• We will mostly focus on runtime complexity
• Often comes at expense of memory, e.g., HashMap

• Start by reasoning about empirical runtimes, 
but…

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
9

7

8

9



2/7/2024

4

Problem with empirical runtimes

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
10

Same code that 
takes 1 min. in 
1990 takes

• ~2 s in 2000?

• ~63 ms in 2010?

• ~2 ms in 2020?

How do we measure efficiency of 
the code apart from the machine?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
11

• Let N be the size of the input 

• For some int[] ar, N could be ar.length

• Count T(N) = number of constant time operations in 
the code as a function of N.

• Reason about how T(N) grows when N becomes 
large.

• “Asymptotic” (in the limit) notation

Reminder: What is constant time?

• Running time does not depend on size of the 
input.

• If ~1 ms to .get() when ArrayList has 1,000 
elements?

• Then ~1 ms to .get() when ArrayList has 
1,000,000 values.

• Other constant time operations might be a very
different constant. 

• Adding 2+2 might be faster than .get(), but both are 
constant.

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
12

10

11

12



2/7/2024

5

Constant Time Examples

• Index into an array (ar[0] or ar[201])

• Arithmetic (+, -, *, /, %, etc.)

• Primitive comparison <, ==, etc.

• Accessing an object attribute (e.g. .length)

• ArrayList .get(), .size(), .add() [to end, 
amortized]

• Non-constant time usually has a loop or method 
call, may depend on implementation of data 
structures at hand

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
13

Big-O (limit definition)
• Given N (for example, the size of the input)

• Function T(N) (for example, the number of constant 
time operations in the code)

Definition (big O notation).

𝑇(𝑁) is 𝑂(𝑔(𝑁)) if lim
𝑁→∞

𝑇 𝑁

𝑔(𝑁)
≤ 𝑐 for some constant 𝑐

that does not depend on 𝑁.

In other words: 𝑇(𝑁) is 𝑂(𝑔(𝑁)) if it is at most a 
constant factor times slower than 𝑔(𝑁) for large 
input 𝑁.

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
14

Two general rules

1. Can drop constants

• 2N+3 → O(N)

• 0.001N + 1,000,000 → O(N)

2. Can drop lower order terms

• 2N2+3N → O(N2)

• N+log(N) → O(N)

• 2N + N2
→ O(2N)

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
15

13

14

15



2/7/2024

6

Hierarchy of some common 
complexity class

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
16

Big O Name Example

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N2) Quadratic Loop over all pairs from N 
things

O(N 
log(N))

Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

Some common complexity 
classes and their growth

N O(log(N)) O(N) O(N2) O(N3) O(2N)

1 1 1 1 1 2

2 2 2 4 8 4

4 3 4 16 64 16

8 4 8 64 512 256

16 5 16 256 4k 65k

32 6 32 1k 32k 4.2E+9

64 7 64 4k 262k 1.8E+19

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
17

If you double N…

• O(log(N)) adds ~1

• O(N) roughly doubles

• O(N2) roughly 
quadruples 

• O(N3) roughly 
multiples by 8

• O(2N) squares each 
time

Relation to Empirical Timing and 
Lower Order Terms

N
N^2 + 19N 

+ 200
factor 

increase
10 490 NA

20 980 2.00

40 2560 2.61

80 8120 3.17

160 28840 3.55

320 108680 3.77

640 421960 3.88

1280 1662920 3.94

2560 6602440 3.97

5120 26311880 3.99

10240 105052360 3.99

20480 419819720 4.00

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
18

Asymptotic analysis 
describe  behavior in 
the limit as N becomes 
large, lower order terms 
may dominate at small 
input sizes.

Looks linear?

Looks 
quadratic?

16

17

18



2/7/2024

7

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
20

🗸

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
21

🗸

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
22

🗸

= 2log(n) = O(log(n))

20

21

22



2/7/2024

8

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
23

🗸

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
24

🗸

🗸

Big-Oh for Runtime: Algorithms & 
Code

• What is the runtime complexity of stuff(n)?

• How many times does the loop iterate?
• In terms of n, the parameter

• Loop body is O(1)?
• Constant time

• Independent of n

• Add n same as add 1

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
25

Linear, O(n)

23

24

25



2/7/2024

9

General strategy for determining 
Big-O runtime complexity

Most general: Determine T(N), the number of 
constant time operations as a function of the size 
of the input, N. Then simplify using Big-O.

Practically, covers common cases:

1. For each line of code, label:

a) Complexity of that line, and   

b) Number of times the line is executed

2. Add up over all lines, multiplying the two labels

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
26

Nested loop example

What about the big-O runtime complexity of this 
code as a function of n?

How many times does line 10 execute?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
27

Line Complexity Iterations

7 O(1) 1

8 O(1) n

9 O(1) ?

10 O(1) ?

13 O(1) 1

Nested loop example

How many times does line 10 execute?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
28

when i is Line 10 executes 
this many times

1 1

2 2

… …

n-2 n-2

n-1 n-1

In total? 1 + 2 +⋯+ 𝑛 − 2 + 𝑛 − 1 ≈
𝑛2

2
 is 

O(n2) iterations

26

27

28



2/7/2024

10

Nested loop example

Putting it together:

Total runtime complexity: (1) + (n) + (n2) + (n2) + (1)

is O(n2)

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
29

Line Complexity Iterations

7 O(1) 1

8 O(1) n

9 O(1) O(n2)

10 O(1) O(n2)

13 O(1) 1

Not all nested loops are quadratic

What about the big-O runtime complexity of this 
code as a function of n?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
30

Line Complexity Iterations

17 O(1) 1

18 O(1) n

19 O(1) 100n

20 O(1) 100n

23 O(1) 1

Reminder: 200n is 200 times slower 
than n, but their runtimes both scale 

linearly 

Total runtime complexity: (1) + (n) + (200n) + (1)
is O(n)

Not all loops are nested

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
31

What about the big-O runtime complexity of this 
code as a function of n?

Line Complexity Iterations

29 O(1) 1

30 O(1) n

31 O(1) n

33 O(1) n

34 O(1) n

36 O(1) 1

Total runtime complexity: (1) + (4n) + (1)
is O(n)

29

30

31



2/7/2024

11

Not all loops increment by 1

Big-O Runtime complexity of calc(N) is…

• How many times does the loop iterate? 
• Concrete to abstract: calc(16), calc(32), …

• Inside loop? O(1) operations

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
32

Generalizing: Concrete to Abstract

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
33

N # loop 

iterations

1 0

2 1

4 k=,1,2…2 iters

8 k=1,2,4…3 iters

N # loop 

iterations

16 5  iterations

32 k=1,2,4,8,16..5 
iters

33 6 iterations

63 6 iterations

O(log(N))

Accounting for iteration and non-
constant time operations

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
34

What about the big-O runtime complexity of this 
code as a function of n = words.size()?

Total: Make n calls to O(n) contains: O(n2)

O(1), 
initialized 
empty List

Loop n 
times…

O(n) in worst 
case

Amortized 
O(1), add to 

end

Still O(1), does not 
copy list to return

32

33

34



2/7/2024

12

Exponential time algorithm?

Problem from previous WOTO: What is the 
runtime complexity of concatAlot as a function 
of reps?

Runtime of line 14 is O(s.length()). And this 
doubles every iteration through the loop.

Examine how the length of s grows by iterations.

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
35

Loop reps 
times

Same as:
s = s + s;

Exponential time algorithm?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
36

Loop reps 
times

Same as:
s = s + s;

Examine how the length of s grows by iterations.

Iteration s.length() O(1) operations (char copies)

0 (input s) 1 (suppose) 2

1 2 4

2 4 8

3 8 16

… … …

reps-1 2reps-1 (2)(2reps-1) = 2reps

So runtime has to 
be at least 2reps, 

exponential 
complexity! 

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
38

🗸

35

36

38



2/7/2024

13

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
39

🗸

2/5/24
CompSci 201, Spring 2024, Runtime 

Efficiency
40

🗸

39

40


	Slide 1
	Slide 2: Logistics, Coming up
	Slide 3: Person in CS: Alan Turing
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Asymptotic Analysis and Big O Notation
	Slide 9: Runtime and memory
	Slide 10: Problem with empirical runtimes
	Slide 11: How do we measure efficiency of the code apart from the machine?
	Slide 12: Reminder: What is constant time?
	Slide 13: Constant Time Examples
	Slide 14: Big-O (limit definition)
	Slide 15: Two general rules
	Slide 16: Hierarchy of some common complexity class
	Slide 17: Some common complexity classes and their growth
	Slide 18: Relation to Empirical Timing and Lower Order Terms
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Big-Oh for Runtime: Algorithms & Code
	Slide 26: General strategy for determining Big-O runtime complexity
	Slide 27: Nested loop example
	Slide 28: Nested loop example
	Slide 29: Nested loop example
	Slide 30: Not all nested loops are quadratic
	Slide 31: Not all loops are nested
	Slide 32: Not all loops increment by 1
	Slide 33: Generalizing: Concrete to Abstract
	Slide 34: Accounting for iteration and non-constant time operations
	Slide 35: Exponential time algorithm?
	Slide 36: Exponential time algorithm?
	Slide 38
	Slide 39
	Slide 40

