L9: Memory, Pointers,
LinkedList

Alex Steiger
CompSci 201: Spring 2024
2/14/2024

Announcements, Coming up

* Today, Wednesday 2/14
* APT 4 due

* Next Monday 2/19
« Project P2: Markov due

* Next Wednesday 2/21
* APT Quiz 1 due

Summer course book bagging is
open — course offerings in CS
Summer Term 1 (May 15 - June 27)
+ CS 230 Discrete Math

« Mathematical notations, logic, and proof; linear and matrix algebra;

graphs, digraphs, trees, representations, and algorithms; counting,
permutations, combinations, discrete probability, Markov models;
advanced topics from algebraic structures, geometric structures,
combinatorial optimization, number theory. Pre/corequisite:
Computer Science 201.

+ CS 250 Intro. Design and Analysis of Algorithms

- Computer structure, assembly language, instruction execution,
addressing techniques, and digital representation of data.
Computer system organization, logic design, microprogramming,
cache and memory systems, and input/output interfaces.
Pre/corequisite: Computer Science 201.

2/14/2024

Summer course book bagging is

open — course offerings in CS
Summer Term 2 (July T — August 11)
+ CS 330 Intro. Design and Analysis of Algorithms

« Design and analysis of efficient algorithms including sorting,
searching, dynamic programming, graph algorithms, fast
multiplication, and others; nondeterministic algorithms and
ggqnputatlona\\y hard problems. Pre/corequisite: Computer Science

» CS 207 Intro. iOS Mobile Programming

« This class explores the world of mobile applications development
based on Apple's iOS operating system and Swift programming
language. The class will work on Mac computers running Xcode, the
integrated development environment, to develop applications for
iPhone/iPad devices. The class covers fundamentals essential to
understanding all aspects of app development from concept to
deployment on the App Store. Students required to present their
project proposals and deliver a fully functional mobile application as a
final project

What is an APT Quiz?

* Set of 3 APT problems, 2 hours to complete.

« Will be available starting this Saturday afternoon (look for
a Canvas/email announcement)

* Must complete by 11:59 pm Wednesday 10/18 (so start
before 10pm)

« Start the quiz from Instructions Doc on Canvas:
shows you the link to the problems and
submission page; clicking link begins your timer.

« Will look/work just like the regular APT page, just with
only 3 problems.

What is allowed?

Yes, allowed No, not allowed

* zyBook * Collaboration or

« Course notes sharing any code.

« APl documentation » Communication about
the problems at all

* VS Code during the window.

* JShell

* Searching internet,
stackoverflow, etc. for
solutions.

2/14/2024

2/14/2024

Don't do these things

1. Do not collaborate. Note that we log all code
submissions and will investigate for academic
integrity.

2. Do not hard code the test cases (if(input == X)
return'Y, etc.).
We show you the test cases to help you debug. But we
search for submissions that do this and you willgeta 0 on
the APT quiz if you hard code the test cases instead of
solving the problem.

Do:

» Make a Cloud Recording on Zoom
« Start before you click link in instruction doc
« Submit URL via Form (like PO, P1)

» Must be a Cloud Recording!
« Penalty for missing/broken Zoom URL

How is it graded?

Not curved; adjusted. 3 problems, 10 points each.

Raw scoreR out | Adjustedscore | 100 point grade

of 30. Aoutof30. scale

27 <=R<=30 A=R 90 - 100

24 <=R <= 26 A=26 Can stlllge_lmthe B,
range even if you can't

21<=R<=23 A=25 solve one; don't panic!

18<=R<=20 A=24

16<=R<=17 A=23

12<=R<=14 A=22

9<=R<=11 A=21

Only going to get a 0 if

6<=R<=8 A=20

you collaborate or
3<=R<=5 A=19 hard code test cases.
1<=R<=2 A=18 Don'tdoit!

Some Exam 1

Problems

10

Big O: Composition

11

Runtime complexity of composed
methods

* Runtime complexity of stuff (stuff(n))?

8
9
1@
11
12
13

public int stuff(int n) {
int sum = @;
for(int k=0; k < n; k += 1) {
sum += n;
1

return sum;

* Value returned by
stuff (n)isn?

* Runtime complexity
of stuff (n?)?

» stuff has linear runtime complexity, so

12

stuff (n?) is O(n?)

2/14/2024

13

14

15

Composing methods general

* Given two methods:

public static int outer (int n) {

public static int inner(int n) {

* What is the runtime complexity of the following?

int result = outer(inner{(n));

Running this code is equivalent to...

int innerValue = inner(n);
int result = outer(innerValue);

Composing methods general

* Given two methods:

public static int outer (int n) {

public static int inner(int n) {
» What is the runtime complexity of the following?
int result = outer(inner{(n));
Three steps: Runtime complexity is Step1+Step3.
1. Calculate runtime complexity of inner(n)
2. Calculate value returned by inner(n)

3. Calculate runtime complexity of outer()
on value from step 2.

Composing methods example

int result = outer(inner(n)); 1. Runtime Complexity
56 public static int outer (int n) { of inner(n) is O(1)

57 int result = 0;

ot for Lint 10; 1y o> {2 \/alue returned by

59 result + 1; inner(n) is O(n?
60 } . .

61 return result; 3. Runtime complexity
o of outer(n?) is

y int i 0(log(n?))

64 public static int innerCint n) { g

65 return n*n; Recall log rules:
66 1 log(n2) = 2log(n

Total runtime complexity: O(1) + O(log(n?)) is O(log(n))
Most of the “work” done executing outer

2/14/2024

Another composition example

int result = outer(inner(n));

56 public static int outer (int n) { 1. Runtime complexity of
57 int result = @; i i

s P S inner(n) is now O(n)
- , e 2. Value returned by

6 return result; inner(n) is still O(n2)
62 } . .

= 3. Runtime complexity of
64 bli tati t r(int n) { H H

o P g rercine outer(n?) is still

I for (int i=8; i<n; 1+0) 4 O(log(n?))

67 result += n;

68 }

69 return result;

e }

Total runtime complexity: O(n) + O(log(n2)) is O(n)
Now most of the “work” done executing inner

16

Linked List, API
Perspective

17

Multiple Implementations of the
Same Interface

2.4.1; List ADT using array and linked lists data structures.

* 123 @ nom

agesList (List ADT)
agesList = new List ¢

Append(agesList, 55)
i)

Appendlagestist, 66)
Print{agesList)
Print resuit: 55, 88, 66 N
Armay-based implementation Linked ist-based implepf@ntation

[ArrayList
langth: 3

Alist ADT is commonly implemented using array and linked list data structures. But, a programmer need
not have knowledge of which data structure is used to use the list ADT.

18

2/14/2024

Motivating List Interface
Implementations by Efficiency
* List<String> a = new LinkedList<>();
* List<String> b = new ArrayList<>();

You already know how to use a List, same exact
methods and functionality with LinkedList!

* Implementation? ArrayList implements List
using Array, LinkedList implements List
using..."links"?

» Tradeoffs? Which is more efficient (for __)?

19

ArrayList uses Array. Fast random
access memory, fast get()

« Accessing Array (or ArraylList get(i)) at index i
takes the same time whether:
« i=1,201,2001, ..

* Possible because Java compiler knows:
» Where in memory the array starts (say position X),
« array is laid out consecutively, all together, in memory,
» Memory each value takes (say 4 bytes per int).
* Allows to calculate the memory position of
myArray[i] in constant time (more in CS
210/250).

20
Pros/Cons of Array-Based Data
Structures

Arraylist Array of list elements

String/StringBuilder Array of characters

HashSet/Map Array of buckets

0(1) lookup by index Hard to add/remove except
atthe end

Little memory overhead, just Adding elements gives

storing elements amortized (averaged)
efficiency, not worst case.

21

2/14/2024

2/14/2024

What is a (singly) linked list
conceptually?

A reference (~pointer) to the first node in a list,
connected by a reference (~pointer) to the next
node.

Not necessarily
list ‘ ‘ ‘ allocated all at once or
sequentially in memory.
No constant time access to nodes in the middle.

To get C, start at A, follow the references
(~pointers).

22

ArrayList much faster than
LinkedList for Random Access
.get() operations

_listsize | linked array
10000 00583 0.0012| g

20000, 0223 00014| 6
30000 06 00009 o,
40000/ 1.1643 0.0008| 1,
50000/ 1.1847 0.0007|
60000 1.703 0.001 8
70000 2.3685 0.0013
80000 3.1883 0.0015 4
90000 4.309 0.0017
100000 61647 0.0021
110000 69777 0.0038
120000 104757 0.0026
130000 103337 0.003
140000 124032 0.0032 —linked —array
150000 158308 0.0059)

23

LinkedList .get () runtime
explained
« Calling 1ist.get (k) is O(N) for LinkedList
« Not quite, O(min(k, size-k), doubly-linked list T,
» list.get (k)is O(1) for ArrayList still O(N)

* To get every element one at a time:
« Linked: 2(1 + 2+ .. + N/2) is O(N?)
e Array: 1+1+ ..+ 1isO(N)

size

5O
LinkedList is

actually doubly-
linked, pointers
forward and back.

24

get() vs. Iterator

This loop is

For LinkedList 1List of N integers...

17 /7 Looping with get
18 for (int im@; i<N; i++) { — —
20 3 Using get with Iterator
21 25k 0.2 0.0 (rounding)
22 /7 Looping with iterator (implicit) goi 0.9 0.0 (rounding)
23 for Cint val : lList) { . , n
24 total += val; 100k 39 0.0 (rounding)
25 200k 16.2 0.0 (rounding)
26
27 // Looping with iterator (explicit)
28 Iterator<Integer> listIter = lList.iterator();
29 while (listIter.hasNext()) {
El'] total += listIter.next(); Equivalent to sec
31 1 loop, hasNext and
o next just like Scanner
— ' inkect
25
What is an Iterator conceptually?
« get() method always starts at the front of the
list.
* Iterator maintains current position in list.
list
Looping with get() Looping with iterator
get() > Start at beginning, Next element where
iterate over i-1 elements. iterator is pointing, then
advance iterator.
26
Are LinkedLists just worse?
Removing from the front
For LinkedList 1List and ArrayList aList of N
integers...
double before = System.nanoTime(); before = System.nanaTime();
for (int t=0; t<n; t++) { for (int t=0; ten; t++) {
1List.remove(index: B); VS alist.remove(index: 8);
+ }
double after = System.nanoTime(); after = System.nanoTime();

System.out.println((after-before)/1e9); System.out.println((after-befare)/1e9);

27

Timing repeatedly removing from the front...

2/14/2024

28

29

34

LinkedList remove/add to front
empirical results

List Size
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

LinkedList ArrayList

runtime runtime

(©) (s)
0.002 0.008 °©
0.001 0.022 °¢
0.001 0.049 7
0.001 0.088 °
0.001 0.152
0.002 0.216
0.003 0.301
0.003 0.409
0.003 0.497
0.004 0.615

—LinkedList runtime (s)
—ArrayList runtime (s)

LinkedList add/remove to
front are O(1) (so remove
N from front is O(N)

Explaining fast remove/add to
front for LinkedList

To remove from the front,

Just update list to point
to the second element.
No other shifting!

To add to the front, just

make a new node pointing
to the second element. No

shifting!

v
VN

!

Linked List, Low-level
DIY perspective

2/14/2024

10

Contrasting how things look to
your computer / in memory

2/14/2024

Array/ArrayList LinkedList
Elements laid out sequentially, one at ~ Elements at arbitrary locations in
atime, in order, in memory. memory, connected only by
myArray references to the next element

myLinkedList
5 (11 |6 |7 / 17

Bl

T
6]

35

Memory and references

« In Java, variables for reference types (anything
that is an object/not a primitive) really store the
location of the object in memory.

« Can have multiple references to the same object

in memory!
6 List<String> words = new LinkedlList<>();
7 words, add("(5"); Prints ['CS”, “201"],
8 List<String> otherWords = words; Ovﬂ|Y_0”9 actual
9 otherllords .add("201"); words List in memory!
10 Sysleﬂ.uut.prinlln(wo’"iﬂ;/
otherWords s 201

36

Multiple objects or multiple
references

Java creates a reference type object in memory
only when the code calls the new operator.

11 List<String> listA = new LinkedlList<();
12 List<String> listB = new LinkedlList<>();

First example create 2 distinct empty lists, but...

11 List<String> listA = new LinkedlList<();
12 List<String> listB = listA;

Second example creates one list in memory with
two references / variable names.

37

11

38

39

40

Pass by value of reference

12 public static void removeFront(List<String> words) {
13 words . remove(@);
14 1

» Java does NOT copy all of words when we call this
method.

« Copies the reference (memory address) and passes
that, O(1) time [memory addresses are 64 bits].
« Changes relevant outside of method.

List<String> words = new LinkedlList<>();
words.add("C5");
removeFront(words);
System.out.println(words);

[CRC RN

the only List in memory.

More Pass by value of reference

» Why does it matter that Java passes a copy of
the reference to methods?

 Cannot “lose” a reference inside a method.

public static void tryBreakReference(List<String> words) {
words = new LinkedList<(); Even though this reassigns

} words in the method...

List<String> words = new LinkedlList<>();

words.add("CS");

tryBreakReference(words); Still prints ['CS’], only the

System.out.println(words); copy ofrgges;egfsreednce Was

Null reference/pointer

The default value for an uninitialized (no

memory allocated by a call to new) object is
null.

Can check if an object == null.

« We will use to denote the end of a linked list, the node
with no more nodes following.

If you try to call any methods on a null object,
will get a null pointer exception error.

2/14/2024

Prints [] (empty), change to
words in method changes

Different for primitive types.

12

Linked list is a list implemented by
linked nodes. What is a node?

« Just a Java object of a class we write, like any
other!

« We want to "link” them together, so each node has a
pointer (really a reference’= a memory location) to
another nodé.

public class ListNode { ListNode first = new ListNode(5);
int info; ListNode second = new ListNode(3);
ListNode next; first.next = second;
ListNode(int x){
info = x;

} y info=3;

ListNode(int x, ListNode node){) next = null:
info = x; next = x012; .
next = node;

} Address x@01 Address x@12
}

41

Creating Nodes, constructing lists

1. Calling new Node(...) always creates a Node
in memory that did not exist before

2. Writing node.next = otherNode; makes
node = (point to) otherNode

3. node.next or node.info gives an error (null
pointer exception) if node is null

42

DIYLinkedList

Live Coding
&

49

2/14/2024

13

	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Summer course book bagging is open – course offerings in CS
	Slide 4: Summer course book bagging is open – course offerings in CS
	Slide 5: What is an APT Quiz?
	Slide 6: What is allowed?
	Slide 7: Don’t do these things
	Slide 8: Do:
	Slide 9: How is it graded?
	Slide 10: Some Exam 1 Problems
	Slide 11: Big O: Composition
	Slide 12: Runtime complexity of composed methods
	Slide 13: Composing methods general
	Slide 14: Composing methods general
	Slide 15: Composing methods example
	Slide 16: Another composition example
	Slide 17: Linked List, API Perspective
	Slide 18: Multiple Implementations of the Same Interface
	Slide 19: Motivating List Interface Implementations by Efficiency
	Slide 20: ArrayList uses Array. Fast random access memory, fast get()
	Slide 21: Pros/Cons of Array-Based Data Structures
	Slide 22: What is a (singly) linked list conceptually?
	Slide 23: ArrayList much faster than LinkedList for Random Access .get() operations
	Slide 24: LinkedList .get() runtime explained
	Slide 25: get() vs. Iterator
	Slide 26: What is an Iterator conceptually?
	Slide 27: Are LinkedLists just worse? Removing from the front
	Slide 28: LinkedList remove/add to front empirical results
	Slide 29: Explaining fast remove/add to front for LinkedList
	Slide 34: Linked List, Low-level DIY perspective
	Slide 35: Contrasting how things look to your computer / in memory
	Slide 36: Memory and references
	Slide 37: Multiple objects or multiple references
	Slide 38: Pass by value of reference
	Slide 39: More Pass by value of reference
	Slide 40: Null reference/pointer
	Slide 41: Linked list is a list implemented by linked nodes. What is a node?
	Slide 42: Creating Nodes, constructing lists
	Slide 49: DIYLinkedList

