
2/14/2024

1

2/14/2024 CompSci 201, Spring 2024, LinkedList 1

L9: Memory, Pointers, 
LinkedList

Alex Steiger

CompSci 201: Spring 2024

2/14/2024

Announcements, Coming up

2/14/2024 CompSci 201, Spring 2024, LinkedList 2

• Today, Wednesday 2/14
• APT 4 due

• Next Monday 2/19
• Project P2: Markov due

• Next Wednesday 2/21
• APT Quiz 1 due

Summer course book bagging is 
open – course offerings in CS

Summer Term 1 (May 15 – June 27)

• CS 230 Discrete Math
• Mathematical notations, logic, and proof; linear and matrix algebra; 

graphs, digraphs, trees, representations, and algorithms; counting, 
permutations, combinations, discrete probability, Markov models; 
advanced topics from algebraic structures, geometric structures, 
combinatorial optimization, number theory. Pre/corequisite: 
Computer Science 201.

• CS 250 Intro. Design and Analysis of Algorithms
• Computer structure, assembly language, instruction execution, 

addressing techniques, and digital representation of data. 
Computer system organization, logic design, microprogramming, 
cache and memory systems, and input/output interfaces. 
Pre/corequisite: Computer Science 201.

2/14/2024 CompSci 201, Spring 2024, LinkedList 3

1

2

3



2/14/2024

2

Summer course book bagging is 
open – course offerings in CS

Summer Term 2 (July 1 – August 11)

• CS 330 Intro. Design and Analysis of Algorithms
• Design and analysis of efficient algorithms including sorting, 

searching, dynamic programming, graph algorithms, fast 
multiplication, and others; nondeterministic algorithms and 
computationally hard problems. Pre/corequisite: Computer Science 
201.

• CS 207 Intro. iOS Mobile Programming
• This class explores the world of mobile applications development 

based on Apple's iOS operating system and Swift programming 
language. The class will work on Mac computers running Xcode, the 
integrated development environment, to develop applications for 
iPhone/iPad devices. The class covers fundamentals essential to 
understanding all aspects of app development from concept to 
deployment on the App Store. Students required to present their 
project proposals and deliver a fully functional mobile application as a 
final project.

2/14/2024 CompSci 201, Spring 2024, LinkedList 4

What is an APT Quiz?

• Set of 3 APT problems, 2 hours to complete.
• Will be available starting this Saturday afternoon (look for 

a Canvas/email announcement)

• Must complete by 11:59 pm Wednesday 10/18 (so start 
before 10pm)

• Start the quiz from Instructions Doc on Canvas:
shows you the link to the problems and 
submission page; clicking link begins your timer.
• Will look/work just like the regular APT page, just with 

only 3 problems.

2/14/2024 CompSci 201, Spring 2024, LinkedList 5

What is allowed?

Yes, allowed

• zyBook

• Course notes

• API documentation

• VS Code

• JShell

No, not allowed

• Collaboration or 
sharing any code.

• Communication about 
the problems at all
during the window.

• Searching internet, 
stackoverflow, etc. for 
solutions.

2/14/2024 CompSci 201, Spring 2024, LinkedList 6

4

5

6



2/14/2024

3

Don’t do these things

1. Do not collaborate. Note that we log all code 
submissions and will investigate for academic 
integrity.

2. Do not hard code the test cases (if(input == X) 
return Y, etc.).
We show you the test cases to help you debug. But we 
search for submissions that do this and you will get a 0 on 
the APT quiz if you hard code the test cases instead of 
solving the problem.

2/14/2024 CompSci 201, Spring 2024, LinkedList 7

Do:

2/14/2024 CompSci 201, Spring 2024, LinkedList 8

• Make a Cloud Recording on Zoom
• Start before you click link in instruction doc

• Submit URL via Form (like P0, P1)

• Must be a Cloud Recording!
• Penalty for missing/broken Zoom URL

How is it graded?

Raw score R out 
of 30.

Adjusted score 
A out of 30.

100 point grade 
scale

27 <= R <= 30 A = R 90 – 100

24 <= R <= 26 A = 26 ~87

21 <= R <= 23 A = 25 ~83

18 <= R <= 20 A = 24 80

15 <= R <= 17 A = 23 ~77

12 <= R <= 14 A = 22 ~73

9 <= R <= 11 A = 21 70

6 <= R <= 8 A = 20 ~67

3 <= R <= 5 A = 19 ~63

1 <= R <= 2 A = 18 60

2/14/2024 CompSci 201, Spring 2024, LinkedList 9

Not curved; adjusted. 3 problems, 10 points each. 

Can still get in the B 
range even if you can’t 
solve one; don’t panic!

Only going to get a 0 if 
you collaborate or 

hard code test cases. 
Don’t do it!

7

8

9



2/14/2024

4

Some Exam 1 
Problems

2/14/2024 CompSci 201, Spring 2024, LinkedList 10

Big O: Composition

2/14/2024 CompSci 201, Spring 2024, LinkedList 11

Runtime complexity of composed 
methods

• Runtime complexity of stuff(stuff(n))?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
12

• Value returned by 
stuff(n)is n2.

• Runtime complexity 
of stuff(n2)?

• stuff has linear runtime complexity, so 
stuff(n2) is O(n2) 

10

11

12



2/14/2024

5

Composing methods general

• Given two methods:

• What is the runtime complexity of the following?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
13

Running this code is equivalent to…

int innerValue = inner(n);
int result = outer(innerValue);

Composing methods general

• Given two methods:

• What is the runtime complexity of the following?

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
14

Three steps: Runtime complexity is Step1+Step3.
1. Calculate runtime complexity of inner(n)
2. Calculate value returned by inner(n)
3. Calculate runtime complexity of outer() 

on value from step 2.

Composing methods example

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
15

1. Runtime complexity 
of inner(n) is O(1)

2. Value returned by 
inner(n) is O(n2)

3. Runtime complexity 
of outer(n2) is 
O(log(n2))

Total runtime complexity: O(1) + O(log(n2)) is O(log(n))
Most of the “work” done executing outer

Recall log rules: 
log(n2) = 2log(n)

13

14

15



2/14/2024

6

Another composition example

2/7/24
CompSci 201, Spring 2024, Asymptotic 

Analysis
16

1. Runtime complexity of 
inner(n) is now O(n)

2. Value returned by 
inner(n) is still O(n2)

3. Runtime complexity of 
outer(n2) is still 
O(log(n2))

Total runtime complexity: O(n) + O(log(n2)) is O(n)
Now most of the “work” done executing inner

Linked List, API 
Perspective

2/14/2024 CompSci 201, Spring 2024, LinkedList 17

Multiple Implementations of the 
Same Interface

2/14/2024 CompSci 201, Spring 2024, LinkedList 18

ArrayList

LinkedList

16

17

18



2/14/2024

7

Motivating List Interface 
Implementations by Efficiency

• List<String> a = new LinkedList<>();

• List<String> b = new ArrayList<>();

You already know how to use a List, same exact 
methods and functionality with LinkedList!

• Implementation? ArrayList implements List 
using Array, LinkedList implements List 
using…“links”?

• Tradeoffs? Which is more efficient (for ___)?

2/14/2024 CompSci 201, Spring 2024, LinkedList 19

ArrayList uses Array. Fast random 
access memory, fast get()

• Accessing Array (or ArrayList get(i)) at index i
takes the same time whether:
• i=1, 201, 2001, …

• Possible because Java compiler knows:
• Where in memory the array starts (say position X),

• array is laid out consecutively, all together, in memory,

• Memory each value takes (say 4 bytes per int).

• Allows to calculate the memory position of 
myArray[i] in constant time (more in CS 
210/250).

2/14/2024 CompSci 201, Spring 2024, LinkedList 20

Pros/Cons of Array-Based Data 
Structures

2/14/2024 CompSci 201, Spring 2024, LinkedList 21

Array-Based Data Structure What array?

ArrayList Array of list elements

String/StringBuilder Array of characters 

HashSet/Map Array of buckets

Pros Cons

O(1) lookup by index Hard to add/remove except 
at the end.

Little memory overhead, just 
storing elements

Adding elements gives 
amortized (averaged) 
efficiency, not worst case.

19

20

21



2/14/2024

8

What is a (singly) linked list 
conceptually?

A reference (~pointer) to the first node in a list, 
connected by a reference (~pointer) to the next 
node. 

No constant time access to nodes in the middle. 
To get C, start at A, follow the references 
(~pointers).

2/14/2024 CompSci 201, Spring 2024, LinkedList 22

BA Clist

Not necessarily 
allocated all at once or 

sequentially in memory.

ArrayList much faster than 
LinkedList for Random Access 

.get() operations

2/14/2024 CompSci 201, Spring 2024, LinkedList 23

0

2

4

6

8

10

12

14

16

18

linked array

LinkedList .get() runtime 
explained

• Calling list.get(k)is O(N) for LinkedList
• Not quite, O(min(k, size-k), doubly-linked list

• list.get(k)is O(1) for ArrayList

• To get every element one at a time:
• Linked: 2(1 + 2 + … + N/2) is O(N2)

• Array:   1 + 1 + … + 1 is O(N)

2/14/2024 CompSci 201, Spring 2024, LinkedList 24

Java API 
LinkedList is 

actually doubly-
linked, pointers 

forward and back.

Worst-case is 
still O(N)

22

23

24



2/14/2024

9

get() vs. Iterator

For LinkedList lList of N integers…

2/14/2024 CompSci 201, Spring 2024, LinkedList 25

N Runtime in s 
Using get

Runtime in s 
with Iterator

25k 0.2 0.0 (rounding)

50k 0.9 0.0 (rounding)

100k 3.9 0.0 (rounding)

200k 16.2 0.0 (rounding)

This loop is 
O(N2)

Also O(N)

Equivalent to second 
loop, hasNext and 

next just like Scanner

What is an Iterator conceptually?

• get()  method always starts at the front of the 
list. 

• Iterator maintains current position in list.

2/14/2024 CompSci 201, Spring 2024, LinkedList 26

BA Clist

Looping with get()
get(i) → Start at beginning, 
iterate over i-1 elements.

Looping with iterator
Next element where 
iterator is pointing, then 
advance iterator.

For LinkedList lList and ArrayList aList of N 
integers…

Timing repeatedly removing from the front…

Are LinkedLists just worse? 
Removing from the front

2/14/2024 CompSci 201, Spring 2024, LinkedList 27

VS

25

26

27



2/14/2024

10

LinkedList remove/add to front 
empirical results

2/14/2024 CompSci 201, Spring 2024, LinkedList 28

List Size

LinkedList 
runtime 
(s)

ArrayList 
runtime 
(s)

10000 0.002 0.008
20000 0.001 0.022
30000 0.001 0.049
40000 0.001 0.088
50000 0.001 0.152
60000 0.002 0.216
70000 0.003 0.301
80000 0.003 0.409
90000 0.003 0.497

100000 0.004 0.615

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

LinkedList runtime (s)

ArrayList runtime (s)

LinkedList add/remove to 
front are O(1) (so remove 

N from front is O(N)

Explaining fast remove/add to 
front for LinkedList

2/14/2024 CompSci 201, Spring 2024, LinkedList 29

BA Clist

To remove from the front,
Just update list to point 
to the second element. 
No other shifting!

To add to the front, just 
make a new node pointing 
to the second element. No 
shifting!

A

B Clist

Linked List, Low-level 
DIY perspective

2/14/2024 CompSci 201, Spring 2024, LinkedList 34

28

29

34



2/14/2024

11

Contrasting how things look to 
your computer / in memory

Array/ArrayList

5 11 6 7

LinkedList

2/14/2024 CompSci 201, Spring 2024, LinkedList 35

7

5

11

6

Elements laid out sequentially, one at 
a time, in order, in memory.

Elements at arbitrary locations in 
memory, connected only by 
references to the next element.myArray

myLinkedList

Memory and references

• In Java, variables for reference types (anything 
that is an object/not a primitive) really store the 
location of the object in memory.

• Can have multiple references to the same object 
in memory!

2/14/2024 CompSci 201, Spring 2024, LinkedList 36

Prints [“CS”, “201”], 
only one actual 
List in memory! 

words

CS
otherWords

201

Multiple objects or multiple 
references

Java creates a reference type object in memory 
only when the code calls the new operator.

First example create 2 distinct empty lists, but…

Second example creates one list in memory with 
two references / variable names.

2/14/2024 CompSci 201, Spring 2024, LinkedList 37

35

36

37



2/14/2024

12

Pass by value of reference

• Java does NOT copy all of words when we call this 
method.

• Copies the reference (memory address) and passes 
that, O(1) time [memory addresses are 64 bits].

• Changes relevant outside of method.

2/14/2024 CompSci 201, Spring 2024, LinkedList 38

Prints [] (empty), change to 
words in method changes 
the only List in memory. 

Different for primitive types.

More Pass by value of reference

• Why does it matter that Java passes a copy of 
the reference to methods?

• Cannot “lose” a reference inside a method.

2/14/2024 CompSci 201, Spring 2024, LinkedList 39

Even though this reassigns 
words in the method…

Still prints [“CS”], only the 
copy of the reference was 

reassigned.

Null reference/pointer

• The default value for an uninitialized (no 
memory allocated by a call to new) object is 
null.

• Can check if an object == null.
• We will use to denote the end of a linked list, the node 

with no more nodes following.

• If you try to call any methods on a null object, 
will get a null pointer exception error.

2/14/2024 CompSci 201, Spring 2024, LinkedList 40

38

39

40



2/14/2024

13

Linked list is a list implemented by 
linked nodes. What is a node?

2/14/2024 CompSci 201, Spring 2024, LinkedList 41

info = 5;
next = null;
next = x012;

ListNode first = new ListNode(5);
ListNode second = new ListNode(3);
first.next = second; 

info = 3;
next = null;

Address x001 Address x012

• Just a Java object of a class we write, like any 
other!

• We want to “link” them together, so each node has a 
pointer (really a reference = a memory location) to 
another node.

Creating Nodes, constructing lists

1. Calling new Node(…) always creates a Node 
in memory that did not exist before

2. Writing node.next = otherNode; makes 
node → (point to) otherNode

3. node.next or node.info gives an error (null 
pointer exception) if node is null

2/14/2024 CompSci 201, Spring 2024, LinkedList 42

DIYLinkedList

Live Coding

2/14/2024 CompSci 201, Spring 2024, LinkedList 49

41

42

49


	Slide 1
	Slide 2: Announcements, Coming up
	Slide 3: Summer course book bagging is open – course offerings in CS
	Slide 4: Summer course book bagging is open – course offerings in CS
	Slide 5: What is an APT Quiz?
	Slide 6: What is allowed?
	Slide 7: Don’t do these things
	Slide 8: Do:
	Slide 9: How is it graded?
	Slide 10: Some Exam 1 Problems
	Slide 11: Big O: Composition
	Slide 12: Runtime complexity of composed methods
	Slide 13: Composing methods general
	Slide 14: Composing methods general
	Slide 15: Composing methods example
	Slide 16: Another composition example
	Slide 17: Linked List, API Perspective
	Slide 18: Multiple Implementations of the Same Interface
	Slide 19: Motivating List Interface Implementations by Efficiency
	Slide 20: ArrayList uses Array. Fast random access memory, fast get()
	Slide 21: Pros/Cons of Array-Based Data Structures
	Slide 22: What is a (singly) linked list conceptually?
	Slide 23: ArrayList much faster than LinkedList for Random Access .get() operations
	Slide 24: LinkedList .get() runtime explained
	Slide 25: get() vs. Iterator
	Slide 26: What is an Iterator conceptually?
	Slide 27: Are LinkedLists just worse? Removing from the front
	Slide 28: LinkedList remove/add to front empirical results
	Slide 29: Explaining fast remove/add to front for LinkedList
	Slide 34: Linked List, Low-level DIY perspective
	Slide 35: Contrasting how things look to your computer / in memory
	Slide 36: Memory and references
	Slide 37: Multiple objects or multiple references
	Slide 38: Pass by value of reference
	Slide 39: More Pass by value of reference
	Slide 40: Null reference/pointer
	Slide 41: Linked list is a list implemented by linked nodes. What is a node?
	Slide 42: Creating Nodes, constructing lists
	Slide 49: DIYLinkedList

